Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8

Archives of Biochemistry and Biophysics
2005.0

Abstract

Recombinant CYP4F8 and CYP4F12 metabolize prostaglandin H2 (PGH2) analogs by omega2- and omega3-hydroxylation and arachidonic acid (20:4n-6) by omega3-hydroxylation. CYP4F8 was found to catalyze epoxidation of docosahexaenoic acid (22:6n-3) and docosapentaenoic acid (22:5n-3) and omega3-hydroxylation of 22:5n-6. CYP4F12 oxidized 22:6n-3 and 22:5n-3 in the same way, but 22:5n-6 was a poor substrate. The products were identified by liquid chromatography-mass spectrometry. The missense mutation 374A>T of CYP4F8 (Tyr125Phe in substrate recognition site-1 (SRS-1)) occurs in low frequency. This variant oxidized two PGH2 analogs, U-51605 and U-44069, in analogy with CYP4F8, but 20:4n-6 and 22:5n-6 were not oxidized. CYP4F enzymes with omega-hydroxylase activity contain a heme-binding Glu residue, whereas CYP4F8 (and CYP4F12) with omega2- and omega 3-hydroxylase activities has a Gly residue in this position of SRS-4. The mutant CYP4F8 Gly328Glu oxidized U-51605 and U-44069 as recombinant CYP4F8, but the hydroxylation of arachidonic acid was shifted from C-18 to C-19. Single amino acid substitutions in SRS-1 and SRS-4 of CYP4F8 may thus influence oxygenation of certain substrates. We conclude that CYP4F8 and CYP4F12 catalyze epoxidation of 22:6n-3 and 22:5n-3, and CYP4F8 omega3-hydroxylation of 22:5n-6.

Knowledge Graph

Similar Paper

Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8
Archives of Biochemistry and Biophysics 2005.0
Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism
Journal of Lipid Research 2008.0
Identification of CYP4F8 in Human Seminal Vesicles as a Prominent 19-Hydroxylase of Prostaglandin Endoperoxides
Journal of Biological Chemistry 2000.0
Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids
Toxicology and Applied Pharmacology 2004.0
15-Hydroxyprostaglandin Dehydrogenase Generation of Electrophilic Lipid Signaling Mediators from Hydroxy Ω-3 Fatty Acids
Journal of Biological Chemistry 2015.0
CYP4F Enzymes Are Responsible for the Elimination of Fingolimod (FTY720), a Novel Treatment of Relapsing Multiple Sclerosis
Drug Metabolism and Disposition 2011.0
ω-Hydroxylation of Z9-octadecenoic, Z9,10-epoxystearic and 9,10-dihydroxystearic acids by microsomal cytochrome P450 systems from Vicia sativa
Biochemical and Biophysical Research Communications 1992.0
Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids
Bioorganic & Medicinal Chemistry Letters 2017.0
Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction
Journal of Lipid Research 2014.0
Regio- and Stereospecificity of Filipin Hydroxylation Sites Revealed by Crystal Structures of Cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis
Journal of Biological Chemistry 2010.0