Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism

Journal of Lipid Research
2008.0

Abstract

Human CYP450 omega-hydroxylases of the CYP4 family are known to convert arachidonic acid (AA) to its metabolite 20-hydroxyeicosatetraenoic acid (20-HETE). This study deals with hydroxylations of four PUFAs, eicosatrienoic acid (ETA), AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) by either human recombinant CYP4s enzymes or human liver microsomal preparations. CYP4F3A and CYP4F3B were the most efficient omega-hydroxylases of these PUFAs. Moreover, the differences in the number of unsaturations of ETA, AA, and EPA allowed us to demonstrate a rise in the metabolic rate of hydroxylation when the double bond in 14-15 or 17-18 was missing. With the CYP4F enzymes, the main pathway was always the omega-hydroxylation of PUFAs, whereas it was the (omega-1)-hydroxylation with CYP1A1, CYP2C19, and CYP2E1. Finally, we demonstrated that the omega9 and omega3 PUFAs (ETA, EPA, and DHA) could all be used as alternative substrates in AA metabolism by human CYP4F2 and -4F3B. Thus, they decreased the ability of these enzymes to convert AA to 20-HETE. However, although ETA was the most hydroxylated substrate, EPA and DHA were the most potent inhibitors of the conversion of AA to 20-HETE. These findings suggest that some physiological effects of omega3 FAs could partly result from a shift in the generation of active hydroxylated metabolites of AA through a CYP-mediated catalysis.

Knowledge Graph

Similar Paper

Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism
Journal of Lipid Research 2008.0
Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8
Archives of Biochemistry and Biophysics 2005.0
Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids
Bioorganic & Medicinal Chemistry Letters 2017.0
ω-Hydroxylation of Z9-octadecenoic, Z9,10-epoxystearic and 9,10-dihydroxystearic acids by microsomal cytochrome P450 systems from Vicia sativa
Biochemical and Biophysical Research Communications 1992.0
15-Hydroxyprostaglandin Dehydrogenase Generation of Electrophilic Lipid Signaling Mediators from Hydroxy Ω-3 Fatty Acids
Journal of Biological Chemistry 2015.0
Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids
Toxicology and Applied Pharmacology 2004.0
Identification of CYP4F8 in Human Seminal Vesicles as a Prominent 19-Hydroxylase of Prostaglandin Endoperoxides
Journal of Biological Chemistry 2000.0
CYP4F Enzymes Are Responsible for the Elimination of Fingolimod (FTY720), a Novel Treatment of Relapsing Multiple Sclerosis
Drug Metabolism and Disposition 2011.0
Dual metabolic pathway of 25‐hydroxyvitamin D<sub>3</sub> catalyzed by human CYP24
European Journal of Biochemistry 2000.0
Metabolism of 4β-Hydroxycholesterol in Humans
Journal of Biological Chemistry 2002.0