Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages

Journal of Ethnopharmacology
2021.0

Abstract

Ethnopharmacological relevance: Morus alba L. (Sangzhi) alkaloids (SZ-A) tablets have been approved by the China National Medical Products Administration for T2DM treatment. Our previous study (Liu et al., 2021) revealed that SZ-A protected against diabetes and inflammation in KKAy mice. However, the mechanism and components in SZ-A exerting anti-inflammatory effects are unclear. Aim of the study: Investigate the effects and molecular mechanisms of SZ-A on inflammation, and identify anti-inflammatory active components in SZ-A. Materials and methods: The major ingredients in SZ-A were analyzed by HPLC and sulfuric acid - anthrone spectrophotometry. The inhibitory activities of SZ-A on lipopolysaccharide (LPS)-stimulated inflammation were determined in bone marrow-derived macrophage (BMDM) and RAW264.7 cells. The cytokine levels of IL-6 and TNF-α in cell culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Gene expression levels of IL-6 and TNF-α were detected by qRT-PCR. The levels of protein phosphorylation of p38 MAPK, ERK, and JNK were analyzed by Western blot. Results: The main components in SZ-A were found to be 1-deoxynojirimycin (DNJ), 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), fagomine (FAG), polysaccharide (APS), and arginine (ARG). SZ-A reduced the levels of IL-6 and TNF-α secreted by LPS-induced RAW264.7 and BMDM cells. Simultaneously, the mRNA expression levels of IL-6 and TNF-α were all significantly suppressed by SZ-A in a concentration-dependent manner. Furthermore, SZ-A inhibited the phosphorylation of p38 MAPK, ERK, and JNK in BMDM and the activation of ERK and JNK signaling in RAW264.7 cells. We also observed that DNJ, DAB, FAG, and ARG markedly downregulated IL-6 and TNF-α cytokine levels, while APS did not have an obvious effect. Conclusions: SZ-A attenuates inflammation at least partly by blocking the activation of p38 MAPK, ERK, and JNK signaling pathways. DNJ, FAG, DAB, and ARG are the main constituents in SZ-A that exert anti-inflammatory effects. © 2021 Elsevier B.V.

Knowledge Graph

Similar Paper

Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages
Journal of Ethnopharmacology 2021.0
Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization
Phytomedicine 2024.0
New anti-diabetic drug Morus alba L. (Sangzhi) alkaloids (SZ-A) improves diabetic nephropathy through ameliorating inflammation and fibrosis in diabetic rats
Frontiers in Medicine 2023.0
Ramulus Mori (Sangzhi) Alkaloids Ameliorate Obesity-Linked Adipose Tissue Metabolism and Inflammation in Mice
Nutrients 2022.0
Schisantherin A Exhibits Anti-inflammatory Properties by Down-Regulating NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Treated RAW 264.7 Cells
Inflammation 2010.0
Steroidal alkaloid solanine A from Solanum nigrum Linn. exhibits anti-inflammatory activity in lipopolysaccharide/interferon γ-activated murine macrophages and animal models of inflammation
Biomedicine & Pharmacotherapy 2018.0
Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice
Antioxidants 2022.0
Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from <i>Morus alba</i> and <i>Morus nigra</i>
Journal of Natural Products 2014.0
Pharmacokinetics and tissue distribution of Ramulus Mori (Sangzhi) alkaloids in rats and its effects on liver enzyme activity
Frontiers in Pharmacology 2023.0
Chemical constituents and anti-inflammatory activity of the total alkaloid extract from Melodinus cochinchinensis (Lour.) Merr. and its inhibition of the NF-κB and MAPK signaling pathways
Phytomedicine 2021.0