Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice

Antioxidants
2022.0

Abstract

Nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes mellitus (T2DM) have highly related mechanisms. Ramulus Mori (Sangzhi) alkaloids (SZ-A) from Morus alba L. were approved in 2020 for the treatment of T2DM. In this study, we examined the therapeutic effects and mechanism of SZ-A on obesity and NAFLD in mice. Mice (C57BL/6J) fed a high-fat diet (HFD) for 14 weeks were treated with SZ-A for another 6 weeks. HFD-induced weight gain was reduced by SZ-A in a dose-dependent manner. SZ-A treatment significantly stimulated adiponectin expression and secretion in adipose tissue and 3T3-L1 adipocytes. Additionally, SZ-A markedly reduced hepatic steatosis (triglyceride, total cholesterol) and expression of pro-inflammatory and pro-fibrotic genes. SZ-A regulated lipid metabolism and oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH)) in the liver. Palmitic acid-induced insulin resistance and lipid accumulation in HepG2 cells were also repressed by SZ-A. Collectively, SZ-A protected mice from HFD-induced NAFLD through an indirect effect of improved systemic metabolism reducing bodyweight, and a direct effect by enhancing the lipid metabolism of HepG2 cells. The weight-loss effect of SZ-A in mice was partly due to improved fatty oxidation instead of influencing food consumption. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Knowledge Graph

Similar Paper

Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice
Antioxidants 2022.0
Ramulus Mori (Sangzhi) Alkaloids Ameliorate Obesity-Linked Adipose Tissue Metabolism and Inflammation in Mice
Nutrients 2022.0
Integration of Transcriptomics and Lipidomics Profiling to Reveal the Therapeutic Mechanism Underlying Ramulus mori (Sangzhi) Alkaloids for the Treatment of Liver Lipid Metabolic Disturbance in High-Fat-Diet/Streptozotocin-Induced Diabetic Mice
Nutrients 2023.0
Pharmacokinetics and tissue distribution of Ramulus Mori (Sangzhi) alkaloids in rats and its effects on liver enzyme activity
Frontiers in Pharmacology 2023.0
Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization
Phytomedicine 2024.0
Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages
Journal of Ethnopharmacology 2021.0
New anti-diabetic drug Morus alba L. (Sangzhi) alkaloids (SZ-A) improves diabetic nephropathy through ameliorating inflammation and fibrosis in diabetic rats
Frontiers in Medicine 2023.0
Tuberostemonine alleviates high-fat diet-induced obesity and hepatic steatosis by increasing energy consumption
Chemico-Biological Interactions 2023.0
Synthesis and Biological Evaluation of 5-Benzylidenepyrimidine-2,4,6(1H,3H,5H)-trione Derivatives for the Treatment of Obesity-Related Nonalcoholic Fatty Liver Disease
Journal of Medicinal Chemistry 2012.0
Buchholzia coriacea seed (wonderful kolanut) alleviates insulin resistance, steatosis, inflammation and oxidative stress in high fat diet model of fatty liver disease
Journal of Food Biochemistry 2022.0