Rational design, chemical synthesis and cellular evaluation of novel 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents

Journal of Molecular Graphics and Modelling
2021.0

Abstract

We present a new class of derivatives of noscapine, 1,3-diynyl-noscapinoids of an antitussive plant alkaloid, noscapine based on our in silico efforts that binds tubulin and displays anticancer activity against a panel of breast cancer cells. Structure-activity analyses pointed the C-9 position of the isoquinoline ring which was modified by coupling of 1,3-diynyl structural motifs to rationally design and screened a series of novel 1,3-diynyl-noscapinoids (20-22) with robust binding affinity with tubulin. The selected 1,3-diynyl-noscapinoids, 20-22 revealed improved predicted binding energy of -6.568 kcal/mol for 20, -7.367 kcal/mol for 21 and -7.922 kcal/mol for 22, respectively in comparison to the lead molecule (-5.246 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDAMB-231, as well as with a panel of primary breast cancer cells isolated from patients. Interestingly, all these derivatives inhibited cellular proliferation in all the cancer cells that ranged between 6.2 to 38.9 muM, which is 6.7 to 1.5 fold lower than that of noscapine. Unlike previously reported derivatives of noscapine that arrests cells in the S-phase, these novel derivatives effectively inhibit proliferation of cancer cells, arrests cell cycle in the G2/M-phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers. CI - Copyright (c) 2021 Elsevier Inc. All rights reserved.

Knowledge Graph

Similar Paper

Rational design, chemical synthesis and cellular evaluation of novel 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents
Journal of Molecular Graphics and Modelling 2021.0
Development of 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents for the management of breast cancer
Journal of Biomolecular Structure and Dynamics 2022.0
In silico design of novel tubulin binding 9-arylimino derivatives of noscapine, their chemical synthesis and cellular activity as potent anticancer agents against breast cancer
Journal of Biomolecular Structure and Dynamics 2022.0
Rational design of novel N‐alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents
Chemical Biology & Drug Design 2021.0
Anticancer Potential of N‐Sulfonyl Noscapinoids: Synthesis and Evaluation
ChemistrySelect 2020.0
Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation
European Journal of Medicinal Chemistry 2014.0
Discovery of noscapine derivatives as potential β-tubulin inhibitors
Bioorganic & Medicinal Chemistry Letters 2020.0
<scp>9‐Ethynyl</scp> noscapine induces <scp>G2</scp> /M arrest and apoptosis by disrupting tubulin polymerization in cervical cancer
Drug Development Research 2021.0
Tubulin Binding, Protein-Bound Conformation in Solution, and Antimitotic Cellular Profiling of Noscapine and Its Derivatives
Journal of Medicinal Chemistry 2012.0
Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells
Biomedicine &amp; Pharmacotherapy 2017.0