Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation

European Journal of Medicinal Chemistry
2014.0

Abstract

Tubulin is a major molecular target for anticancer drugs. The dynamic process of microtubule assembly and disassembly can be blocked by various agents that bind to distinct sites on tubulin, usually its β-subunit. Among the antimitotic agents that perturb microtubule dynamics, noscapinoids represent an emerging class of agents. In particular, 9'-bromonoscapine (EM011) has been identified as a potent noscapine analog. Here we present high yielding, efficient synthetic methods based on Suzuki coupling of 9'-alkyl and 9'-arylnoscapines and an evaluation of their antiproliferative properties. Our results showed that 9'-alkyl and 9'-aryl derivatives inhibit proliferation of human cancer cells. The most active compounds were the 9'-methyl and the 9'-phenyl derivatives, which showed similar cytotoxic potency in comparison to the 9'-brominated derivative. Interestingly these newly synthesized derivatives did not induce cell death in normal human lymphocytes, suggesting that the compounds may be selective against cancer cells. All of these derivatives, except 9'-(2-methoxyphenyl)-noscapine, efficiently induced a cell cycle arrest in the G2/M phase of the cell cycle in HeLa and Jurkat cells. Furthermore, we showed that the most active compounds in HeLa cells induced apoptosis following the mitochondrial pathway with the activation of both caspase-9 and caspase-3. In addition, these compounds significantly reduced the expression of the anti-apoptotic proteins Mcl-1 and Bcl-2.

Knowledge Graph

Similar Paper

Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation
European Journal of Medicinal Chemistry 2014.0
In silico design of novel tubulin binding 9-arylimino derivatives of noscapine, their chemical synthesis and cellular activity as potent anticancer agents against breast cancer
Journal of Biomolecular Structure and Dynamics 2022.0
Anticancer Potential of N‐Sulfonyl Noscapinoids: Synthesis and Evaluation
ChemistrySelect 2020.0
Rational design of novel N‐alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents
Chemical Biology & Drug Design 2021.0
Rational design, chemical synthesis and cellular evaluation of novel 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents
Journal of Molecular Graphics and Modelling 2021.0
<scp>9‐Ethynyl</scp> noscapine induces <scp>G2</scp> /M arrest and apoptosis by disrupting tubulin polymerization in cervical cancer
Drug Development Research 2021.0
Synthesis and biological evaluation of novel biaryl type α-noscapine congeners
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells
Biomedicine &amp; Pharmacotherapy 2017.0
Discovery of noscapine derivatives as potential β-tubulin inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2020.0
Development of 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents for the management of breast cancer
Journal of Biomolecular Structure and Dynamics 2022.0