Delineating the activity of the potent nicotinic acetylcholine receptor agonists (+)-anatoxin-a and (−)-hosieine-A

Acta Crystallographica Section F Structural Biology Communications
2022.0

Abstract

The affinity and thermodynamic parameters for the interactions of two naturally occurring neurotoxins, (+)-anatoxin-a and (-)-hosieine-A, with acetylcholine-binding protein were investigated using a fluorescence-quenching assay and isothermal titration calorimetry. The crystal structures of their complexes with acetylcholine-binding protein from Aplysia californica (AcAChBP) were determined and reveal details of molecular recognition in the orthosteric binding site. Comparisons treating AcAChBP as a surrogate for human α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) suggest that the molecular features involved in ligand recognition and affinity for the protein targets are conserved. The ligands exploit interactions with similar residues as the archetypal nAChR agonist nicotine, but with greater affinity. (-)-Hosieine-A in particular has a high affinity for AcAChBP driven by a favorable entropic contribution to binding. The ligand affinities help to rationalize the potent biological activity of these alkaloids. The structural data, together with comparisons with related molecules, suggest that there may be opportunities to extend the hosieine-A scaffold to incorporate new interactions with the complementary side of the orthosteric binding site. Such a strategy may guide the design of new entities to target human α4β2 nAChR that may have therapeutic benefit. © 2022 International Union of Crystallography. All rights reserved.

Knowledge Graph

Similar Paper

Delineating the activity of the potent nicotinic acetylcholine receptor agonists (+)-anatoxin-a and (−)-hosieine-A
Acta Crystallographica Section F Structural Biology Communications 2022.0
Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors
Bioorganic & Medicinal Chemistry 2011.0
Use of Acetylcholine Binding Protein in the Search for Novel α7 Nicotinic Receptor Ligands. In Silico Docking, Pharmacological Screening, and X-ray Analysis
Journal of Medicinal Chemistry 2009.0
Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane
European Journal of Medicinal Chemistry 2015.0
Protein-ligand interactions. 6 nicotinic acetylcholine receptor agonist activity of isoquinoline alkaloids
Bioorganic & Medicinal Chemistry Letters 1996.0
Synthetic and conformational studies on anatoxin-a: a potent acetylcholine agonist
Journal of Medicinal Chemistry 1985.0
Structure-based design, synthesis and structure–activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein
Bioorganic & Medicinal Chemistry Letters 2012.0
Unique Neonicotinoid Binding Conformations Conferring Selective Receptor Interactions
Journal of Agricultural and Food Chemistry 2011.0
Insights into the Structural Determinants Required for High-Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors: An Integrated Approach to Behaviorally Active Nicotinic Ligands
Journal of Medicinal Chemistry 2012.0
In silico characterization of cytisinoids docked into an acetylcholine binding protein
Bioorganic & Medicinal Chemistry Letters 2010.0