Sinomenine alleviates glomerular endothelial permeability by activating the C/EBP-α/claudin-5 signaling pathway

Human Cell
2022.0

Abstract

Diabetic nephropathy (DN) is one of the main complications of diabetes. It is closely associated with the dysfunction of glomerular endothelial cells (GECs) under hyperglycemia. Severe inflammation is an important inducer for the development of GECs dysfunction, and it contributes to the disruption of tight junctions in GECs and the increased endothelial permeability. Sinomenine, an alkaloid monomer extracted from the rhizome of Sinomenium acutum, is recognized for its multiple pharmacological functions, including an anti-DN property. The present study aimed to explore the potential functional mechanism of Sinomenine against DN. Animals were randomly divided into Sham, DN, DN + Sinomenine (20 mg/kg), and DN + Sinomenine (40 mg/kg) groups. The Sinomenine or vehicle was administered every day for 6 weeks, followed by collecting renal tissues for further detection. Increased body weights, elevated blood glucose levels and UAE values, aggravated renal tissue pathology, higher concentrations of IL-18 and IL-1 beta in renal tissues, and reduced claudin-5 expression were observed in DN rats. However, the administration of Sinomenine significantly alleviated all these DN-related changes. Furthermore, human renal glomerular endothelial cells (HrGECs) were treated with high glucose (HG, 30 mM) with or without Sinomenine (50, 100 mu M) for 24 h. We found that Sinomenine treatment ameliorated the elevated production of IL-18 and IL-1 beta, increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) value, and reduction of claudin-5 and C/EBP-alpha in HG-treated HrGECs. Moreover, the regulatory effect of Sinomenine on endothelial monolayer permeability in HG-treated HrGECs was abolished by the knockdown of C/EBP-alpha, indicating C/EBP-alpha is required for the effect of Sinomenine. We concluded that Sinomenine alleviated diabetic nephropathy-induced renal glomerular endothelial dysfunction via activating the C/EBP-alpha/claudin-5 axis.

Knowledge Graph

Similar Paper

Sinomenine alleviates glomerular endothelial permeability by activating the C/EBP-α/claudin-5 signaling pathway
Human Cell 2022.0
Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways
Acta Pharmacologica Sinica 2023.0
Neuroprotective Effects of Sinomenine on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory and Nrf2-Dependent Anti-Oxidative Stress Activity
NeuroMolecular Medicine 2023.0
Sinomenine Confers Protection Against Myocardial Ischemia Reperfusion Injury by Preventing Oxidative Stress, Cellular Apoptosis, and Inflammation
Frontiers in Pharmacology 2022.0
Solasonine alleviates high glucose‐induced podocyte injury through increasing Nrf2‐medicated inhibition of NLRP3 activation
Drug Development Research 2022.0
<p>Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo</p>
Drug Design, Development and Therapy 2020.0
Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway
European Journal of Pharmacology 2021.0
Sinomenine alleviates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages
Immunopharmacology and Immunotoxicology 2020.0
New anti-diabetic drug Morus alba L. (Sangzhi) alkaloids (SZ-A) improves diabetic nephropathy through ameliorating inflammation and fibrosis in diabetic rats
Frontiers in Medicine 2023.0
Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase
Journal of Neuroinflammation 2007.0