Oxoglaucine Suppresses Hepatic Fibrosis by Inhibiting TGFβ-Induced Smad2 Phosphorylation and ROS Generation

Molecules
2023.0

Abstract

Hepatic fibrosis is the first stage of liver disease, and can progress to a chronic status, such as cirrhosis or hepatocellular carcinoma. Excessive production of extracellular matrix (ECM) components plays an important role in the development of fibrosis. Mechanistically, transforming growth factor beta (TGFbeta)-induced phosphorylation of Smad is thought to be a key signaling pathway in the development of liver fibrosis. Although the natural isoquinoline alkaloid oxoglaucine (1,2,9,10-tetramethoxy-7H-dibenzo(de,g)quinolin-7-one) exerts numerous beneficial effects, including anti-cancer, anti-inflammatory, and anti-osteoarthritic effects in diverse cell types, the effects of oxoglaucine on liver fibrosis and fibrogenic gene expression have not been fully elucidated. The aim of this study is to evaluate the signaling pathway and antifibrotic activity of isoquinoline alkaloid oxoglaucine in TFGbeta-induced hepatic fibrosis in vitro. Using Hepa1c1c7 cells and primary hepatocytes, we demonstrated that oxoglaucine treatment resulted in inhibition of the expression of fibrosis markers such as collagen, fibronectin, and alpha-SMA. Subsequent experiments showed that oxoglaucine suppressed TGFbeta-induced phosphorylation of Smad2 and reactive oxygen species (ROS) generation, without altering cell proliferation. We further determined that the increase in Smad7 by oxoglaucine treatment is responsible for the inhibition of Smad2 phosphorylation and the anti-fibrogenic effects. These findings indicate that oxoglaucine plays a crucial role in suppression of fibrosis in hepatocytes, thereby making it a potential drug candidate for treatment of liver fibrosis.

Knowledge Graph

Similar Paper

Oxoglaucine Suppresses Hepatic Fibrosis by Inhibiting TGFβ-Induced Smad2 Phosphorylation and ROS Generation
Molecules 2023.0
Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways
International Immunopharmacology 2020.0
PPARγ/NF‐κB and TGF‐β1/Smad pathway are involved in the anti‐fibrotic effects of levo‐tetrahydropalmatine on liver fibrosis
Journal of Cellular and Molecular Medicine 2021.0
Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl<sub>4</sub>: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis
Food &amp; Function 2021.0
&lt;p&gt;Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo&lt;/p&gt;
Drug Design, Development and Therapy 2020.0
Neferine Exerts Antioxidant and Anti-Inflammatory Effects on Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the MAPK and NF-κB/IκBα Pathways
Evidence-Based Complementary and Alternative Medicine 2021.0
Oxysophocarpine suppresses hepatocellular carcinoma growth and sensitizes the therapeutic blockade of anti‐Lag‐3 via reducing FGL1 expression
Cancer Medicine 2020.0
Natural alkaloid 8-oxo-epiberberine inhibited TGF-β1-triggred epithelial-mesenchymal transition by interfering Smad3
Toxicology and Applied Pharmacology 2020.0
A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds
European Journal of Pharmacology 2020.0
18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway
MedChemComm 2017.0