Discovery of Natural Bisbenzylisoquinoline Analogs from the Library of Thai Traditional Plants as SARS-CoV-2 3CLPro Inhibitors: In Silico Molecular Docking, Molecular Dynamics, and In Vitro Enzymatic Activity

Journal of Chemical Information and Modeling
2023.0

Abstract

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CL(Pro) is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CL(Pro). Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CL(pro) during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CL(Pro). To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC(50) value of 29.93 muM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.

Knowledge Graph

Similar Paper

Discovery of Natural Bisbenzylisoquinoline Analogs from the Library of Thai Traditional Plants as SARS-CoV-2 3CL<sup>Pro</sup> Inhibitors: In Silico Molecular Docking, Molecular Dynamics, and In Vitro Enzymatic Activity
Journal of Chemical Information and Modeling 2023.0
Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL<sup>pro</sup>): anin silicoscreening of alkaloids and terpenoids from African medicinal plants
Journal of Biomolecular Structure and Dynamics 2020.0
Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19
European Journal of Medicinal Chemistry 2022.0
Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (Mpro)
European Journal of Medicinal Chemistry 2023.0
Bioguided Isolation of Cyclopenin Analogues as Potential SARS-CoV-2 Mpro Inhibitors from Penicillium citrinum TDPEF34
Biomolecules 2021.0
The Alkaloids of Isatis indigotica as Promising Candidates against COVID-19
Journal of Reports in Pharmaceutical Sciences 2022.0
Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach
Journal of Natural Products 2023.0
Design and Evaluation of Bispidine-Based SARS-CoV-2 Main Protease Inhibitors
ACS Medicinal Chemistry Letters 2022.0
Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms
Journal of Biomolecular Structure and Dynamics 2021.0
A Computational Study of Carbazole Alkaloids from Murraya koenigii as Potential SARS-CoV-2 Main Protease Inhibitors
Applied Biochemistry and Biotechnology 2023.0