The Alkaloids of Isatis indigotica as Promising Candidates against COVID-19

Journal of Reports in Pharmaceutical Sciences
2022.0

Abstract

Background: Due to the complexities of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective medicinal treatment protocol for this lethal disease with a high prevalence has not been approved yet. This study aimed to explore the efficacy of the main alkaloids of Isatis indigotica, one of the richest plant sources of alkaloids against SARS-CoV-2 targets computationally. Materials and Methods: 3D structures of the target proteins including 3CLpro; PLpro, and RdRp were downloaded from Protein Data Bank. The structures of ligands were retrieved from PubChem database or optimized by ORCA program. Ritonavir, Lopinavir, Sofosbuvir, and Remdesivir were selected as control inhibitors. Docking calculations were performed by AutoDock Vina option and top-ranked compounds were subjected to molecular dynamics simulation by Gromacs 5.1.4 simulation package. Result: The results showed that all 15 compounds had stronger interactions with PLpro in comparison to the other enzymes. Dihydroxylisopropylidenylisatisine A binds to the active site of PLpro with highest affinity (-9.3 kcal/mol) which is even more than the binding constants of Ritonavir and Lopinavir. Of the 15 compounds, Dihydroxylisopropylidenylisatisine A and Isatibisindosulfonic acid B had the highest tendency to bind to 3CLpro. Dihydroxylisopropylidenylisatisine A, Indirubin, Insatindibisindolamide A, Indigo, Insatindibisindolamide B, Isatibisindosulfonic acid B and Isatindosulfonic acid B had the highest RdRp binding affinity even more Remdesivir. Conclusion: Based on the results, the highest and weakest interaction with all three enzymes was observed for Dihydroxylisopropylidenylisatisine A and Epigoitrin, respectively. Based on these findings, Dihydroxylisopropylidenylsatistine A might be potential therapeutic candidate against SARS-CoV-2. © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

Knowledge Graph

Similar Paper

The Alkaloids of Isatis indigotica as Promising Candidates against COVID-19
Journal of Reports in Pharmaceutical Sciences 2022.0
Indole alkaloids as potential candidates against COVID-19: an in silico study
Journal of Molecular Modeling 2022.0
Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL<sup>pro</sup>): anin silicoscreening of alkaloids and terpenoids from African medicinal plants
Journal of Biomolecular Structure and Dynamics 2020.0
Discovery of Natural Bisbenzylisoquinoline Analogs from the Library of Thai Traditional Plants as SARS-CoV-2 3CL<sup>Pro</sup> Inhibitors: In Silico Molecular Docking, Molecular Dynamics, and In Vitro Enzymatic Activity
Journal of Chemical Information and Modeling 2023.0
Tetrandrine, an Effective Inhibitor of COVID-19 Main Protease (Mpro); Insights from Molecular Docking and Dynamics Simulations
International Journal of Pharmaceutical Investigation 2023.0
A Computational Insight on the Inhibitory Potential of 8‐Hydroxydihydrosanguinarine (8‐HDS), a Pyridone Containing Analog of Sanguinarine, against SARS CoV2**
Chemistry &amp; Biodiversity 2022.0
Isolation and In Silico Prediction of Potential Drug-like Compounds with a New Dimeric Prenylated Quinolone Alkaloid from Zanthoxylum rhetsa (Roxb.) Root Extracts Targeted against SARS-CoV-2 (Mpro)
Molecules 2022.0
Sulfur-enriched alkaloids from the root of Isatis indigotica
Acta Pharmaceutica Sinica B 2018.0
Antiviral glycosidic bisindole alkaloids from the roots ofIsatis indigotica
Journal of Asian Natural Products Research 2015.0
Potential of Natural Alkaloids From Jadwar (Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach
Frontiers in Molecular Biosciences 2022.0