A Novel RANKL‐Targeted Furoquinoline Alkaloid Ameliorates Bone Loss in Ovariectomized Osteoporosis through Inhibiting the NF‐κB Signal Pathway and Reducing Reactive Oxygen Species

Oxidative Medicine and Cellular Longevity
2022.0

Abstract

Dysregulation of osteoclast-osteoblast balance, resulting in abnormal bone remodeling, is responsible for postmenopausal osteoporosis (PMOP) or other secondary forms of osteoporosis. We demonstrated that dictamnine (DIC), a novel RANKL-targeted furoquinoline alkaloid, inhibits osteoclastogenesis by facilitating the activities of reactive oxygen species (ROS), NF-kappaB, and NFATc1 in vitro and prevents the development of OVX-induced osteoporosis mouse models in vivo. Methods. The docking mechanism of DIC and RANKL was initially identified by protein-ligand molecular docking. RNA sequencing was performed and analyzed to reveal the potential mechanism and signaling pathway of the antiosteoporosis effects of DIC. To verify the sequencing results, we examined the impact of DIC on RANKL-induced osteoclast differentiation, bone resorption, F-actin ring production, ROS generation, and NF-kappaB activation in osteoclasts in vitro. Moreover, a luciferase assay was performed to determine the binding and transcriptional activity of Nrf2 and NF-kappaB. The in vivo efficacy of DIC was assessed with an ovariectomy- (OVX-) induced osteoporosis model, which was analyzed using micro-CT and bone histomorphometry. Results. The molecular docking results indicated that DIC could bind particularly to RANKL. RNA-seq confirmed that DIC could regulate the osteoclast-related pathway. DIC suppressed osteoclastogenesis, bone resorption, F-actin belt formation, osteoclast-specific gene expression, and ROS activity by preventing NFATc1 expression and affecting NF-kappaB signaling pathways in vitro. The luciferase assay showed that DIC not only suppressed the activity of Nrf2 but also contributed to the combination of Nrf2 and NF-kappaB. Our in vivo study indicated that DIC protects against OVX-induced osteoporosis and preserves bone volume by inhibiting osteoclast activity and function. Conclusions. DIC can ameliorate osteoclast formation and OVX-induced osteoporosis and therefore is a potential therapeutic treatment for osteoporosis. CI - Copyright (c) 2022 Puiian Wong et al.

Knowledge Graph

Similar Paper

A Novel RANKL‐Targeted Furoquinoline Alkaloid Ameliorates Bone Loss in Ovariectomized Osteoporosis through Inhibiting the NF‐κB Signal Pathway and Reducing Reactive Oxygen Species
Oxidative Medicine and Cellular Longevity 2022.0
Isoliensinine Suppresses Osteoclast Formation Through NF-κB Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss
Frontiers in Pharmacology 2022.0
Aloperine improves osteoporosis in ovariectomized mice by inhibiting RANKL-induced NF-κB, ERK and JNK approaches
International Immunopharmacology 2021.0
Oxymatrine Attenuates Osteoclastogenesis via Modulation of ROS-Mediated SREBP2 Signaling and Counteracts Ovariectomy-Induced Osteoporosis
Frontiers in Cell and Developmental Biology 2021.0
Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL‐induced osteoclastogenesis
Journal of Cellular and Molecular Medicine 2020.0
Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways
Frontiers in Endocrinology 2021.0
Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling
International Journal of Biological Sciences 2020.0
Vindoline Inhibits RANKL-Induced Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss in Mice
Frontiers in Pharmacology 2020.0
Formononetin Attenuates Osteoclastogenesis via Suppressing the RANKL-Induced Activation of NF-κB, c-Fos, and Nuclear Factor of Activated T-Cells Cytoplasmic 1 Signaling Pathway
Journal of Natural Products 2014.0
Berbamine inhibits RANKL- and M-CSF-mediated osteoclastogenesis and alleviates ovariectomy-induced bone loss
Frontiers in Pharmacology 2022.0