Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL‐induced osteoclastogenesis

Journal of Cellular and Molecular Medicine
2020.0

Abstract

Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL-induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F-actin ring formation and tartrate-resistant acid phosphatase (TRAP) staining in dose-dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK-related trigger RANKL by phosphorylation JNK/ERK/p38-MAPK, I kappa B alpha/p65-NF-kappa B, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K-AKT-NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL-induced RANK-TRAF6 association and RANKL-related gene and protein markers such as NFATc1, Cathepsin K, MMP-9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.

Knowledge Graph

Similar Paper

Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL‐induced osteoclastogenesis
Journal of Cellular and Molecular Medicine 2020.0
Vindoline Inhibits RANKL-Induced Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss in Mice
Frontiers in Pharmacology 2020.0
Isoliensinine Suppresses Osteoclast Formation Through NF-κB Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss
Frontiers in Pharmacology 2022.0
A Novel RANKL‐Targeted Furoquinoline Alkaloid Ameliorates Bone Loss in Ovariectomized Osteoporosis through Inhibiting the NF‐κB Signal Pathway and Reducing Reactive Oxygen Species
Oxidative Medicine and Cellular Longevity 2022.0
Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways
Frontiers in Endocrinology 2021.0
Aloperine improves osteoporosis in ovariectomized mice by inhibiting RANKL-induced NF-κB, ERK and JNK approaches
International Immunopharmacology 2021.0
Oxymatrine Attenuates Osteoclastogenesis via Modulation of ROS-Mediated SREBP2 Signaling and Counteracts Ovariectomy-Induced Osteoporosis
Frontiers in Cell and Developmental Biology 2021.0
Formononetin Attenuates Osteoclastogenesis via Suppressing the RANKL-Induced Activation of NF-κB, c-Fos, and Nuclear Factor of Activated T-Cells Cytoplasmic 1 Signaling Pathway
Journal of Natural Products 2014.0
<scp>l</scp>‐tetrahydropalmatine suppresses osteoclastogenesis in vivo and in vitro via blocking RANK‐TRAF6 interactions and inhibiting NF‐κB and MAPK pathways
Journal of Cellular and Molecular Medicine 2020.0
Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling
International Journal of Biological Sciences 2020.0