Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2

Molecules
2021.0

Abstract

There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (M(pro)) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = -7.78, -7.65, -6.39, -6.28, -8.84 Kcal/mol) for the main protease (M(pro)) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.

Knowledge Graph

Similar Paper

Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2
Molecules 2021.0
Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19)
Biomolecules 2021.0
Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro)
Computers in Biology and Medicine 2022.0
Antimicrobial Alkaloids from Marine-Derived Fungi as Drug Leads versus COVID-19 Infection: A Computational Approach to Explore their Anti-COVID-19 Activity and ADMET Properties
Evidence-Based Complementary and Alternative Medicine 2022.0
Structure- and Ligand-Based in silico Studies towards the Repurposing of Marine Bioactive Compounds to Target SARS-CoV-2
Arabian Journal of Chemistry 2021.0
Integrated bioinformatics–cheminformatics approach toward locating pseudo‐potential antiviral marine alkaloids against <scp>SARS‐CoV‐2‐Mpro</scp>
Proteins: Structure, Function, and Bioinformatics 2022.0
A Computational Study of Carbazole Alkaloids from Murraya koenigii as Potential SARS-CoV-2 Main Protease Inhibitors
Applied Biochemistry and Biotechnology 2023.0
Quinoline and Quinazoline Alkaloids against COVID-19: An In Silico Multitarget Approach
Journal of Chemistry 2021.0
Indole alkaloids as potential candidates against COVID-19: an in silico study
Journal of Molecular Modeling 2022.0
Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (Mpro)
European Journal of Medicinal Chemistry 2023.0