Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro)

Computers in Biology and Medicine
2022.0

Abstract

Over a span of two years ago, since the emergence of the first case of the novel coronavirus (SARS-CoV-2) in China, the pandemic has crossed borders causing serious health emergencies, immense economic crisis and impacting the daily life worldwide. Despite the discovery of numerous forms of precautionary vaccines along with other recently approved orally available drugs, yet effective antiviral therapeutics are necessarily needed to hunt this virus and its variants. Historically, naturally occurring chemicals have always been considered the primary source of beneficial medications. Considering the SARS-CoV-2 main protease (M-pro) as the duplicate key element of the viral cycle and its main target, in this paper, an extensive virtual screening for a focused chemical library of 15 batzelladine marine alkaloids, was virtually examined against SARS-CoV-2 main protease (M-pro) using an integrated set of modern computational tools including molecular docking (MDock), molecule dynamic (MD) simulations and structure-activity relationships (SARs) as well. The molecular docking predictions had disclosed four promising compounds including batzelladines H-I (8-9) and batzelladines F-G (6-7), respectively according to their prominent ligand-protein energy scores and relevant binding affinities with the (M-pro) pocket residues. The best two chemical hits, batzelladines H-I (8-9) were further investigated thermodynamically though studying their MD simulations at 100 ns, where they showed excellent stability within the accommodated (M-pro) pocket. Moreover, SARs studies imply the crucial roles of the fused tricyclic guanidinic moieties, its degree of unsaturation, position of the N-OH functionality and the length of the side chain as a spacer linking between two active sites, which disclosed fundamental structural and pharmacophoric features for efficient protein-ligand interaction. Such interesting findings are greatly highlighting further in vitro/vivo examinations regarding those marine natural products (MNPs) and their synthetic equivalents as promising antivirals.

Knowledge Graph

Similar Paper

Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro)
Computers in Biology and Medicine 2022.0
Integrated bioinformatics–cheminformatics approach toward locating pseudo‐potential antiviral marine alkaloids against <scp>SARS‐CoV‐2‐Mpro</scp>
Proteins: Structure, Function, and Bioinformatics 2022.0
Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19)
Biomolecules 2021.0
Indole alkaloids as potential candidates against COVID-19: an in silico study
Journal of Molecular Modeling 2022.0
Potential of Natural Alkaloids From Jadwar (Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach
Frontiers in Molecular Biosciences 2022.0
Structure- and Ligand-Based in silico Studies towards the Repurposing of Marine Bioactive Compounds to Target SARS-CoV-2
Arabian Journal of Chemistry 2021.0
A Computational Study of Carbazole Alkaloids from Murraya koenigii as Potential SARS-CoV-2 Main Protease Inhibitors
Applied Biochemistry and Biotechnology 2023.0
Antimicrobial Alkaloids from Marine-Derived Fungi as Drug Leads versus COVID-19 Infection: A Computational Approach to Explore their Anti-COVID-19 Activity and ADMET Properties
Evidence-Based Complementary and Alternative Medicine 2022.0
Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2
Molecules 2021.0
Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach
Journal of Natural Products 2023.0