Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous-Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge

Molecules
2021.0

Abstract

Zygophyllum coccineum, an edible halophytic plant, is part of the traditional medicine chest in the Mediterranean region for symptomatic relief of diabetes, hypertension, wound healing, burns, infections, and rheumatoid arthritis pain. The current study aimed to characterize Z. coccineum phytoconstituents, and the evaluations of the anti-microbial-biofilm, and anti-cancers bioactivities of the plant's mother liquor, i.e., aqueous-ethanolic extract, and its subsequent fractions. The in silico receptors interaction feasibility of Z. coccineum major constituents with Staph GyraseB, and human topoisomerase-II beta (h-TOP-II beta) were conducted to confirm the plant's anti-microbial and anti-cancer biological activities. Thirty-eight secondary metabolites of flavonoids, stilbene, phenolic acids, alkaloids, and coumarin classes identified by LC-ESI-TOF-MS spectrometric analysis, and tiliroside (kaempferol-3-O-(6 ''''-p-coumaroyl)-glucoside, 19.8%), zygophyloside-F (12.78%), zygophyloside-G (9.67%), and isorhamnetin-3-O-glucoside (4.75%) were identified as the major constituents. A superior biofilm obliteration activity established the minimum biofilm eradication concentration (MBEC) for the chloroform fraction at 3.9-15.63 mu g/mL, as compared to the positive controls (15.63-31.25 mu g/mL) against all the microbial strains that produced the biofilm under study, except the Aspergillus fumigatus. The aqueous-ethanolic extract showed cytotoxic effects with IC50 values at 3.47, 3.19, and 2.27 mu g/mL against MCF-7, HCT-116, and HepG2 cell-lines, respectively, together with the inhibition of h-TOP-II beta with IC50 value at 45.05 ng/mL in comparison to its standard referral inhibitor (staurosporine, IC50, 135.33 ng/mL). This conclusively established the anti-cancer activity of the aqueous-ethanolic extract that also validated by in silico receptor-binding predicted energy levels and receptor-site docking feasibility of the major constituents of the plant's extract. The study helped to authenticate some of the traditional phytomedicinal properties of the anti-infectious nature of the plant.

Knowledge Graph

Similar Paper

Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous-Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge
Molecules 2021.0
In Vitro Assessment of Antioxidant and Cytotoxic Activities of Zygophyllum coccineum L. Methanolic Extract
Egyptian Journal of Chemistry 2023.0
In Vitro Antimicrobial and Antiproliferative Activities of the Root Bark Extract and Isolated Chemical Constituents of Zanthoxylum paracanthum Kokwaro (Rutaceae)
Plants 2020.0
PHYTOCHEMISTRY AND ANTIBACTERIAL ACTIVITY OF TRADITIONAL MEDICINAL PLANT ZIZIPHUS RUGOSA LAM.
Indian Drugs 2023.0
Cytotoxicity, Antimicrobial Activity, Molecular Docking, Drug likeness and DFT Analysis of Benzo[c]phenanthridine Alkaloids from Roots of Zanthoxylum chalybeum
Biointerface Research in Applied Chemistry 2021.0
Ziziphus mucronata Willd. (Rhamnaceae): it's botany, toxicity, phytochemistry and pharmacological activities
Heliyon 2020.0
Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations
Molecules 2023.0
Filago germanica (L.) Huds. bioactive constituents: Secondary metabolites fingerprinting and in vitro biological assays
Industrial Crops and Products 2020.0
Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities
Life 2022.0
Alkaloid glycosides and their cytotoxic constituents from Zanthoxylum nitidum
Phytochemistry Letters 2019.0