Anticancer Natural Products with Collateral Sensitivity: A Review

Mini-Reviews in Medicinal Chemistry
2021.0

Abstract

Background: Multidrug resistance (MDR) is the resistance of cancer cells against a variety of currently used antineoplastic agents with diverse structural scaffolds and different anticancer mechanisms. It has been recognized as one of the major impediments to the successful treatment of cancer, leading to the metastasis and relapse of malignant diseases. Introduction: Collateral sensitivity (CS) is the characteristic of certain chemicals to kill the drugresistant sublines selectively over the parental cell lines from which the resistant cells were generated. The research and development of new drug candidates with collateral sensitivity will be an efficient approach to conquer multidrug resistance in cancer. We aim to provide an update on the discovery of natural products with collateral sensitivity. Results and Conclusion: The review focused on the characterized anticancer natural products and their derivatives with collateral sensitivity, their working mechanisms, and related structure-activity relationships, emphasizing recently identified CS compounds. According to their structural features, these MDR-targeting compounds were mainly classified into the following categories: flavonoids, terpenoids, stilbenes, alkaloids and quinones. The exploration of molecular mechanisms of collateral sensitivity and structural features of anticancer agents with collateral sensitivity provided an effective approach for the clinic treatment of MDR in cancer. © 2021 Bentham Science Publishers.

Knowledge Graph

Similar Paper

Anticancer Natural Products with Collateral Sensitivity: A Review
Mini-Reviews in Medicinal Chemistry 2021.0
Natural products as multidrug resistance modulators in cancer
European Journal of Medicinal Chemistry 2019.0
Structure–Activity Relationships of 8-Hydroxyquinoline-Derived Mannich Bases with Tertiary Amines Targeting Multidrug-Resistant Cancer
Journal of Medicinal Chemistry 2022.0
Collateral Sensitivity of Multidrug-Resistant Cells to the Orphan Drug Tiopronin
Journal of Medicinal Chemistry 2011.0
Antitumor Agents 286. Design, Synthesis, and Structure−Activity Relationships of 3′R,4′R-Disubstituted-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DSP) Analogues as Potent Chemosensitizers to Overcome Multidrug Resistance
Journal of Medicinal Chemistry 2010.0
Structure–Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and Its Analogues
Journal of Medicinal Chemistry 2011.0
Exploring the Structure–Activity Relationship and Mechanism of a Chromene Scaffold (CXL Series) for Its Selective Antiproliferative Activity toward Multidrug-Resistant Cancer Cells
Journal of Medicinal Chemistry 2018.0
Novel Hybrids of 3-Substituted Coumarin and Phenylsulfonylfuroxan as Potent Antitumor Agents with Collateral Sensitivity against MCF-7/ADR
Journal of Medicinal Chemistry 2022.0
Scaffold Targeting Drug-Resistant Colon Cancers
Journal of Medicinal Chemistry 2007.0
Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
Journal of Medicinal Chemistry 2012.0