Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease

Pharmacological Research
2021.0

Abstract

Lipophagy is the autophagic degradation of lipid droplets. Dysregulated lipophagy has been implicated in the development of non-alcoholic fatty liver disease (NAFLD). Ajugol is an active alkaloid isolated from the root of Rehmannia glutinosa which is commonly used to treat various inflammatory and metabolic diseases. This study aimed to investigate the effect of ajugol on alleviating hepatic steatosis and sought to determine whether its potential mechanism via the key lysosome-mediated process of lipophagy. Our findings showed that ajugol significantly improved high-fat diet-induced hepatic steatosis in mice and inhibited palmitate-induced lipid accumulation in hepatocytes. Further analysis found that hepatic steatosis promoted the expression of LC3-II, an autophagosome marker, but led to autophagic flux blockade due to a lack of lysosomes. Ajugol also enhanced lysosomal biogenesis and promoted the fusion of autophagosome and lysosome to improve impaired autophagic flux and hepatosteatosis. Mechanistically, ajugol inactivated mammalian target of rapamycin and induced nuclear translocation of the transcription factor EB (TFEB), an essential regulator of lysosomal biogenesis. siRNA-mediated knockdown of TFEB significantly abrogated ajugol-induced lysosomal biogenesis as well as autophagosome-lysosome fusion and lipophagy. We conclude that lysosomal deficit is a critical mediator of hepatic steatosis, and ajugol may alleviate NAFLD via promoting the TFEB-mediated autophagy-lysosomal pathway and lipophagy. CI - Copyright (c) 2021 Elsevier Ltd. All rights reserved.

Knowledge Graph

Similar Paper

Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease
Pharmacological Research 2021.0
Tetrahydropalmatine ameliorates hepatic steatosis in nonalcoholic fatty liver disease by switching lipid metabolism via AMPK-SREBP-1c-Sirt1 signaling axis
Phytomedicine 2023.0
Integration of Transcriptomics and Lipidomics Profiling to Reveal the Therapeutic Mechanism Underlying Ramulus mori (Sangzhi) Alkaloids for the Treatment of Liver Lipid Metabolic Disturbance in High-Fat-Diet/Streptozotocin-Induced Diabetic Mice
Nutrients 2023.0
Theobromine ameliorates nonalcoholic fatty liver disease by regulating hepatic lipid metabolism via mTOR signaling pathway in vivo and in vitro
Canadian Journal of Physiology and Pharmacology 2021.0
Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway
Phytomedicine 2023.0
Food-Derived β-Carboline Alkaloids Ameliorate Lipid Droplet Accumulation in Human Hepatocytes
Pharmaceuticals 2022.0
Berbamine induced AMPK activation regulates mTOR/SREBP-1c axis and Nrf2/ARE pathway to allay lipid accumulation and oxidative stress in steatotic HepG2 cells
European Journal of Pharmacology 2020.0
Fumigaclavine C ameliorates liver steatosis by attenuating hepatic de novo lipogenesis via modulation of the RhoA/ROCK signaling pathway
BMC Complementary Medicine and Therapies 2023.0
LCN2 contributes to the improvement of nonalcoholic steatohepatitis by 8-Cetylberberine
Life Sciences 2023.0
Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice
Antioxidants 2022.0