Scaffold Tailoring by a Newly Detected Pictet–Spenglerase Activity of Strictosidine Synthase: From the Common Tryptoline Skeleton to the Rare Piperazino-indole Framework

Journal of the American Chemical Society
2012.0

Abstract

The Pictet-Spenglerase strictosidine synthase (STR1) has been recognized as a key enzyme in the biosynthesis of some 2000 indole alkaloids in plants, some with high therapeutic value. In this study, a novel function of STR1 has been detected which allows for the first time a simple enzymatic synthesis of the strictosidine analogue 3 harboring the piperazino[1,2-a]indole (PI) scaffold and to switch from the common tryptoline (hydrogenated carboline) to the rare PI skeleton. Insight into the reaction is provided by X-ray crystal analysis and modeling of STR1 ligand complexes. STR1 presently provides exclusively access to 3 and can act as a source to generate by chemoenzymatic approaches libraries of this novel class of alkaloids which may have new biological activities. Synthetic or natural monoterpenoid alkaloids with the PI core have not been reported before. © 2011 American Chemical Society.

Knowledge Graph

Similar Paper

Scaffold Tailoring by a Newly Detected Pictet–Spenglerase Activity of Strictosidine Synthase: From the Common Tryptoline Skeleton to the Rare Piperazino-indole Framework
Journal of the American Chemical Society 2012.0
Stereocomplementary Chemoenzymatic Pictet–Spengler Reactions for Formation of Rare Azepino-indole Frameworks: Discovery of Antimalarial Compounds
ACS Catalysis 2019.0
Uncovering the Mechanism of Azepino‐Indole Skeleton Formation via Pictet–Spengler Reaction by Strictosidine Synthase: A Quantum Chemical Investigation
ChemistryOpen 2023.0
Substrate specificity of strictosidine synthase
Bioorganic & Medicinal Chemistry Letters 2006.0
Total Syntheses of (−)‐Strictosidine and Related Indole Alkaloid Glycosides
Angewandte Chemie International Edition 2020.0
Improved Expression of His<sub>6</sub>‐Tagged Strictosidine Synthase cDNA for Chemo‐Enzymatic Alkaloid Diversification
Chemistry &amp; Biodiversity 2010.0
Total Synthesis of (−)-Strictosidine and Interception of Aryne Natural Product Derivatives “Strictosidyne” and “Strictosamidyne”
Journal of the American Chemical Society 2021.0
Discovery of a Short‐Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid
ChemBioChem 2018.0
The stereospecific and enantiospecific synthesis of indole alkaloids which culminated in the ambidextrous Pictet–Spengler reaction for the C-19 methyl–substituted sarpagine family
Progress in Heterocyclic Chemistry 2021.0
Bioinspired Transformations Using Strictosidine Aglycones: Divergent Total Syntheses of Monoterpenoid Indole Alkaloids in the Early Stage of Biosynthesis
Chemistry – A European Journal 2022.0