New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration

The Journal of Pharmacology and Experimental Therapeutics
2016.0

Abstract

Growing data support peripheral opioid antinociceptive effects, particularly in inflammatory pain models. Here, we examined the antinociceptive effects of subcutaneously administered, recently synthesized 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU) compared with morphine-6-O-sulfate (M6SU) in a rat model of inflammatory pain induced by an injection of complete Freund's adjuvant and in a mouse model of visceral pain evoked by acetic acid. Subcutaneous doses of 14-O-MeM6SU and M6SU up to 126 and 547 nmol/kg, respectively, produced significant and subcutaneous or intraplantar naloxone methiodide (NAL-M)-reversible antinociception in inflamed paws compared with noninflamed paws. Neither of these doses significantly affected thiobutabarbital-induced sleeping time or rat pulmonary parameters. However, the antinociceptive effects of higher doses were only partially reversed by NAL-M, indicating contribution of the central nervous system. In the mouse writhing test, 14-O-MeM6SU was more potent than M6SU after subcutaneous or intracerebroventricular injections. Both displayed high subcutaneous/intracerebroventricular ED50 ratios. The antinociceptive effects of subcutaneous 14-O-MeM6SU and M6SU up to 136 and 3043 nmol/kg, respectively, were fully antagonized by subcutaneous NAL-M. In addition, the test compounds inhibited mouse gastrointestinal transit in antinociceptive doses. Taken together, these findings suggest that systemic administration of the novel compound 14-O-MeM6SU similar to M6SU in specific dose ranges shows peripheral antinociception in rat and mouse inflammatory pain models without central adverse effects. These findings apply to male animals and must be confirmed in female animals. Therefore, titration of systemic doses of opioid compounds with limited access to the brain might offer peripheral antinociception of clinical importance. CI - Copyright (c) 2016 by The American Society for Pharmacology and Experimental Therapeutics.

Knowledge Graph

Similar Paper

New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration
The Journal of Pharmacology and Experimental Therapeutics 2016.0
Comparisons of In Vivo and In Vitro Opioid Effects of Newly Synthesized 14-Methoxycodeine-6-O-sulfate and Codeine-6-O-sulfate
Molecules 2020.0
Synthesis and Pharmacological Activities of 6-Glycine Substituted 14-Phenylpropoxymorphinans, a Novel Class of Opioids with High Opioid Receptor Affinities and Antinociceptive Potencies
Journal of Medicinal Chemistry 2011.0
Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives
Journal of Medicinal Chemistry 2019.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 22. Influence of the 14-Alkoxy Group and the Substitution in Position 5 in 14-Alkoxymorphinan-6-ones on in Vitro and in Vivo Activities
Journal of Medicinal Chemistry 2005.0
Effect of a 6-Cyano Substituent in 14-OxygenatedN-Methylmorphinans on Opioid Receptor Binding and Antinociceptive Potency
Journal of Medicinal Chemistry 2005.0
Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects
Journal of Medicinal Chemistry 2021.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 20. 14-Phenylpropoxymetopon:  An Extremely Powerful Analgesic
Journal of Medicinal Chemistry 2003.0
[(3-Chlorophenyl)piperazinylpropyl]pyridazinones and Analogues as Potent Antinociceptive Agents
Journal of Medicinal Chemistry 2003.0
New orally effective 3-(2-nitro)phenylpropanamide analgesic derivatives: Synthesis and antinociceptive evaluation
European Journal of Medicinal Chemistry 2013.0