Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives

Journal of Medicinal Chemistry
2019.0

Abstract

Herein, the synthesis and pharmacological characterization of an extended library of differently substituted N-methyl-14- O-methylmorphinans with natural and unnatural amino acids and three dipeptides at position 6 that emerged as potent μ/δ opioid receptor (MOR/DOR) agonists with peripheral antinociceptive efficacy is reported. The current study adds significant value to our initial structure-activity relationships on a series of zwitterionic analogues of 1 (14- O-methyloxymorphone) by targeting additional amino acid residues. The new derivatives showed high binding and potent agonism at MOR and DOR in vitro. In vivo, the new 6-amino acid- and 6-dipeptide-substituted derivatives of 1 were highly effective in inducing antinociception in the writhing test in mice after subcutaneous administration, which was antagonized by naloxone methiodide demonstrating activation of peripheral opioid receptors. Such peripheral opioid analgesics may represent alternatives to presently available drugs for a safer pain therapy.

Knowledge Graph

Similar Paper

Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives
Journal of Medicinal Chemistry 2019.0
Synthesis and Pharmacological Activities of 6-Glycine Substituted 14-Phenylpropoxymorphinans, a Novel Class of Opioids with High Opioid Receptor Affinities and Antinociceptive Potencies
Journal of Medicinal Chemistry 2011.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 22. Influence of the 14-Alkoxy Group and the Substitution in Position 5 in 14-Alkoxymorphinan-6-ones on in Vitro and in Vivo Activities
Journal of Medicinal Chemistry 2005.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 18. N-Substituted 14-Phenylpropyloxymorphinan-6-ones with Unanticipated Agonist Properties:  Extending the Scope of Common Structure−Activity Relationships
Journal of Medicinal Chemistry 2003.0
N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists
Scientific Reports 2020.0
Synthesis and Structure–Activity Relationships of 5′-Aryl-14-alkoxypyridomorphinans: Identification of a μ Opioid Receptor Agonist/δ Opioid Receptor Antagonist Ligand with Systemic Antinociceptive Activity and Diminished Opioid Side Effects
Journal of Medicinal Chemistry 2020.0
Effect of a 6-Cyano Substituent in 14-OxygenatedN-Methylmorphinans on Opioid Receptor Binding and Antinociceptive Potency
Journal of Medicinal Chemistry 2005.0
Parallel Synthesis of Hexahydrodiimidazodiazepines Heterocyclic Peptidomimetics and Their in Vitro and in Vivo Activities at μ (MOR), δ (DOR), and κ (KOR) Opioid Receptors
Journal of Medicinal Chemistry 2015.0
Synthesis and biological evaluation of 14-alkoxymorphinans. 1. Highly potent opioid agonists in the series of (-)-14-methoxy-N-methylmorphinan-6-ones
Journal of Medicinal Chemistry 1984.0
Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective μ Opioid Receptor Agents
Journal of Medicinal Chemistry 2012.0