Importance of carbon 6 chirality in conferring irreversible opioid antagonism to naltrexone-derived affinity labels

Journal of Medicinal Chemistry
1983.0

Abstract

A series of five epimeric pairs of naltrexone derivatives that contain an electrophilic substituent at the 6 alpha- or 6 beta-position was synthesized and tested on the guinea pig ileal longitudinal muscle (GPI) and mouse vas deferens (MVD) preparations in order to determine if the orientation of the electrophile is important for covalent bonding to opioid receptors. In the GPI all compounds were pharmacologically active as reversible agonists, but only the 6 beta-isomers of the fumaramate ester 2b (beta-FNA) and isothiocyanate 6b exhibited covalent reactivity, involving a selective irreversible antagonism of the mu agonist, morphine, without affecting kappa agonists. The 6 alpha-isomer 2a (alpha-FNA) was itself nonalkylating but was able to protect the GPI against alkylation by its epimer, beta-FNA, indicating that the two epimers bind to the same receptor. These results suggest that the proper orientation of the electrophilic substituent is required for covalent bonding with a proximal nucleophile in the case of mu receptor blockade. Moreover, the lack of covalent bonding to kappa receptors by these or other ligands in this series indicates the possible absence of sufficiently reactive nucleophiles on this recognition site. In the MVD, 2b, but not 2a, irreversibly antagonized morphine (as in GPI), whereas neither epimer exhibited irreversible antagonism toward the delta agonist, [D-Ala2,D-Leu5]enkephalin (DADLE). In contrast, both of the isothiocyanate epimers (6a,b) irreversibly blocked mu and delta receptors. Evidence suggesting differences between mu receptors in the MVD and GPI was obtained with the beta-iodoacetamide 5b, which was an irreversible blocker of morphine only in the MVD. When analyzed together with those of previous studies with the nitrogen mustard analogues, alpha- and beta-chlornaltrexamine, the data suggest that the receptor-alkylating ability of each isomer in an epimeric pair differs most when the electrophile possesses a narrow spectrum of reactivity.

Knowledge Graph

Similar Paper

Importance of carbon 6 chirality in conferring irreversible opioid antagonism to naltrexone-derived affinity labels
Journal of Medicinal Chemistry 1983.0
Design and synthesis of naltrexone-derived affinity labels with nonequilibrium opioid agonist and antagonist activities. Evidence for the existence of different .mu. receptor subtypes in different tissues
Journal of Medicinal Chemistry 1984.0
Electrophilic opioid ligands. Oxygen-tethered .alpha.-methylene-.gamma.-lactone, acrylate, isothiocyanate, and epoxide derivatives of 6.beta.-naltrexol
Journal of Medicinal Chemistry 1992.0
Conjugate addition ligands of opioid antagonists. Methacrylate esters and ethers of 6.alpha.- and 6.beta.-naltrexol
Journal of Medicinal Chemistry 1990.0
A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities
Journal of Medicinal Chemistry 1980.0
Synthesis and biological activity of analogs of .beta.-chlornaltrexamine and .beta.-funaltrexamine at opioid receptors
Journal of Medicinal Chemistry 1986.0
Isothiocyanate-Substituted Benzyl Ether Opioid Receptor Ligands Derived from 6.beta.-Naltrexol
Journal of Medicinal Chemistry 1995.0
Synthesis and Opioid Receptor Affinity of a Series of Aralkyl Ethers of 6.alpha.- and 6.beta.-Naltrexol
Journal of Medicinal Chemistry 1994.0
Diastereomeric 6-desoxy-6-spiro-.alpha.-methylene-.gamma.-butyrolactone derivatives of naltrexone and oxymorphone. Selective irreversible inhibition of naltrexone binding in an opioid receptor preparation by a conformationally restricted Michael acceptor ligand
Journal of Medicinal Chemistry 1984.0
Electrophilic .alpha.-methylene-.gamma.-lactone and isothiocyanate opioid ligands related to etorphine
Journal of Medicinal Chemistry 1990.0