Isozyme-specific enzyme inhibitors. 11. (L-homocysteine)-ATP S-C5' covalent adducts as inhibitors of rat methionine adenosyltransferases

Journal of Medicinal Chemistry
1986.0

Abstract

The title compounds (14a,b) were 5' epimers of a derivative of a phosphonate isostere of ATP in which the CH2OP alpha system of ATP was replaced by CH(R)CH2P alpha [R = L-S(CH2)2CH(NH2)CO2H]. They resisted synthesis via attempted S-alkylation of the corresponding epimeric 5'-mercapto derivatives. A practicable route to 14a,b commenced with Michael condensation of L-homocysteine with the diphenyl ester of the 5',6'-vinyl phosphonate analogue of 2',3'-O-isopropylideneadenosine 5'-phosphate. The resulting epimeric 5' thioethers were separated by reverse-phase HPLC. The two phenyl groups were replaced by benzyl groups, after which the alpha-amino acid residue was protected as an N-Boc methyl ester. Both benzyl groups were removed by hydrogenolysis, and the resulting phosphonic acid was converted into its pyrophosphoryl derivative. Blocking groups were then removed under conditions that furnished 14a and 14b without racemization of their L-amino acid residues. Also synthesized were the P beta-NH-P gamma imido analogue (15a) of 14a and the sulfoxide derivative (16a) of 14a. The structures of 14a and 16a were verified by FAB mass spectra, which revealed the protonated molecular ions of their sodium salts. All adducts appeared to function as dual substrate site inhibitors (competitive to ATP and to methionine) of the rat normal tissue (MAT-2) form of methionine adenosyltransferase (MAT); 14a and 15a [KM(ATP)/Ki = 4 and 9, respectively] were the most effective. Adduct 15a was the most effective inhibitor [KM(ATP)/Ki = 13] of the MAT-T form from rat hepatoma tissue; the kinetic data indicated dual-site inhibition by 15a with apparently complete coverage of the ATP site and incomplete coverage of the methionine site. The inhibition properties of the adducts indicated little preference in the order in which the two MAT forms bound ATP and methionine.

Knowledge Graph

Similar Paper

Isozyme-specific enzyme inhibitors. 11. (L-homocysteine)-ATP S-C5' covalent adducts as inhibitors of rat methionine adenosyltransferases
Journal of Medicinal Chemistry 1986.0
Isozyme-specific enzyme inhibitors. 10. Adenosine 5'-triphosphate derivatives as substrates or inhibitors of methionine adenosyltransferases of rat normal and hepatoma tissues
Journal of Medicinal Chemistry 1986.0
Isozyme-specific enzyme inhibitors. 12. C- and N-methylmethionines as substrates and inhibitors of methionine adenosyltranferases of normal and hepatoma rat tissues
Journal of Medicinal Chemistry 1986.0
Species- or isozyme-selective enzyme inhibitors. 8. Synthesis of disubstituted two-substrate condensation products as inhibitors of rat adenylate kinases
Journal of Medicinal Chemistry 1982.0
Synthesis and evaluation of some stable multisubstrate adducts as inhibitors of catechol O-methyltransferase
Journal of Medicinal Chemistry 1981.0
Analogues of S-adenosylhomocysteine as potential inhibitors of biological transmethylation. Synthesis of analogues with modifications at the 5'-thioether linkage
Journal of Medicinal Chemistry 1976.0
Inhibitors of polyamine biosynthesis. 8. Irreversible inhibition of mammalian S-adenosyl-L-methionine decarboxylase by substrate analogs
Journal of Medicinal Chemistry 1980.0
Species- or isozyme-specific enzyme inhibitors. 7. Selective effects in inhibitions of rat adenylate kinase isozymes by adenosine 5'-phosphate derivatives
Journal of Medicinal Chemistry 1982.0
Multisubstrate adducts as potential inhibitors of S-adenosylmethionine dependent methylases: inhibition of indole N-methyltransferase by (5H-deoxyadenosyl)[3-(3-indolyl)propyl-1-yl]methylsulfonium and (5'-deoxyadenosyl)[4-(3-indolyl)but-1-yl]methylsulfonium salts
Journal of Medicinal Chemistry 1983.0
Species- or isozyme-specific enzyme inhibitors. 4. Design of a two-site inhibitor of adenylate kinase with isozyme selectivity
Journal of Medicinal Chemistry 1982.0