Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent: benzothiazol-2-one 7-ethylamines

Journal of Medicinal Chemistry
1987.0

Abstract

Our interest in identifying D-1 and D-2 dopamine receptor agonists that are not catechols led us to extend previous studies with oxindoles by investigating analogues of dopamine, N,N-dipropyldopamine, m-tyramine, N,N-dipropyl-m-tyramine, and epinine in which the m-hydroxyl is replaced by the NH portion of a thiazol-2-one, oxazol-2-one, or imidazol-2-one group fused to the 2,3-position. These compounds were evaluated for their affinity and agonist activity at D-1 and D-2 receptors by using in vitro assays. Replacement of the m-hydroxy in N,N-dipropyldopamine with the thiazol-2-one group resulted in a dramatic increase in D-2 receptor affinity and activity compared to that of N,N-dipropyldopamine itself or that of the corresponding oxindole, 1. The resulting compound, 7-hydroxy-4-[2-(di-n-propylamino)ethyl]benzothiazol-2(3H)-one (4), is the most potent D-2 receptor agonist reported to date in the field-stimulated rabbit ear artery (ED50 = 0.028 nM). The benzoxazol-2-one (6), benzimidazol-2-one (5), and isatin (51) analogues showed D-2 receptor agonist potency similar to that of 1. The des-7-hydroxyl analogue of 4 (21) also has enhanced D-2 receptor activity compared to that of the corresponding oxindole, 8. 7-Hydroxy-4-(2-aminoethyl)benzothiazol-2(3H)-one, 27, a non-catechol, has enhanced D-1 and D-2 receptor activity in vitro compared to that of the corresponding oxindole, 7. In vivo, 27 increased renal blood flow and decreased blood pressure in the dog. However, these effects were mediated primarily by D-2 receptor agonist activity. This may be a result of the D-1 partial agonist activity of 27 coupled with its potent D-2 receptor activity.

Knowledge Graph

Similar Paper

Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent: benzothiazol-2-one 7-ethylamines
Journal of Medicinal Chemistry 1987.0
Synthesis and evaluation of several cathechol bioisosteres as potential dopamine receptor ligands
Bioorganic & Medicinal Chemistry Letters 1991.0
Structure–Activity Relationship Study ofN<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization
Journal of Medicinal Chemistry 2012.0
Dopamine receptor agonists: 3-allyl-6-chloro-2,3,4,5-tetrahydro-1-(4-hydroxyphenyl)-1H-3-benzazepine-7,8-diol and a series of related 3-benzazepines
Journal of Medicinal Chemistry 1986.0
Specific dopamine D-1 and DA1 properties of 4-(mono- and -dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline and its tetrahydrothieno[2,3c]pyridine analog
Journal of Medicinal Chemistry 1987.0
Dopamine receptor agonist activity of some 5-(2-aminoethyl)carbostyril derivatives
Journal of Medicinal Chemistry 1985.0
Development of a Highly Potent D<sub>2</sub>/D<sub>3</sub> Agonist and a Partial Agonist from Structure–Activity Relationship Study of N<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Implication in the Treatment of Parkinson’s Disease
Journal of Medicinal Chemistry 2015.0
Synthesis and SAR study of a novel series of dopamine receptor agonists
Bioorganic &amp; Medicinal Chemistry 2014.0
Binding and Preliminary Evaluation of 5-Hydroxy- and 10-Hydroxy-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinolines as Dopamine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
Synthesis and dopaminergic activity of a series of new 1-aryl tetrahydroisoquinolines and 2-substituted 1-aryl-3-tetrahydrobenzazepines
Bioorganic Chemistry 2018.0