Synthesis and biological evaluation of poly-.gamma.-glutamyl metabolites of 10-deazaaminopterin and 10-ethyl-10-deazaaminopterin

Journal of Medicinal Chemistry
1988.0

Abstract

The chemical synthesis of a series of poly-gamma-glutamyl metabolites of the experimental anticancer drugs 10-deazaaminopterin (10-DAAM) and 10-ethyl-10-deazaaminopterin (10-EDAAM) has been carried out by the solid-phase procedure. The synthetic products were identical with the poly-gamma-glutamyl metabolites of radiolabeled 10-DAAM and 10-EDAAM produced by normal mouse tissues with regard to elution volume from [(diethylamino)ethyl]cellulose columns and susceptibility to hydrolysis by human plasma folylpolyglutamate hydrolase. Poly-gamma-glutamyl metabolites with a glutamate chain length of up to four glutamate residues were detected in the tissues. The antifolate activity was evaluated with methotrexate (MTX) sensitive and MTX-resistant strains of Lactobacillus casei and Streptococcus faecium. In general, inhibitory potency decreases with increasing Glu chain length. However there are two exceptions. Addition of one Glu residue to 10-DAAM enhances its potency for MTX-resistant L. casei and addition of one Glu residue to 10-EDAAM enhances its potency for the MTX-sensitive L. casei. As shown earlier for MTX polyglutamates, polyglutamylation greatly enhances the inhibitory potency of 10-DAAM and 10-EDAAM for L. casei thymidylate synthase. MTX polyglutamates are 15-30 times more inhibitory than the corresponding 10-DAAM derivatives and 30-60 times more inhibitory than the corresponding 10-EDAAM derivatives. Polyglutamylation of 10-DAAM had little influence on its ability to inhibit L. casei dihydrofolate reductase; however, with 10-EDAAM, addition of one or two Glu residues enhanced its inhibitory potency 2.3-fold.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of poly-.gamma.-glutamyl metabolites of 10-deazaaminopterin and 10-ethyl-10-deazaaminopterin
Journal of Medicinal Chemistry 1988.0
Folate analogs. 26. Syntheses and antifolate activity of 10-substituted derivatives of 5,8-dideazafolic acid and of the poly-.gamma.-glutamyl metabolites of N10-propargyl-5,8-dideazafolic acid (PDDF)
Journal of Medicinal Chemistry 1986.0
Folate analogs. 34. Synthesis and antitumor activity of non-polyglutamylatable inhibitors of dihydrofolate reductase
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 20. Replacement of glutamate by longer-chain amino diacids: Effects on dihydrofolate reductase inhibition, cytotoxicity, and in vivo antitumor activity
Journal of Medicinal Chemistry 1983.0
Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity
Journal of Medicinal Chemistry 1984.0
Synthesis and biological activity of the 2-desamino and 2-desamino-2-methyl analogs of aminopterin and methotrexate
Journal of Medicinal Chemistry 1991.0
Synthesis and antifolate properties of 10-alkyl-8,10-dideazaminopterins
Journal of Medicinal Chemistry 1984.0
Synthesis and antitumor activity of 10-propargyl-10-deazaaminopterin
Journal of Medicinal Chemistry 1993.0
Synthesis and antitumor activity of 10-alkyl-10-deazaminopterins. A convenient synthesis of 10-deazaminopterin
Journal of Medicinal Chemistry 1982.0
Methotrexate analogs. 34. Replacement of the glutamate moiety in methotrexate and aminopterin by long-chain 2-aminoalkanedioic acids
Journal of Medicinal Chemistry 1988.0