Benzothiopyranoindazoles, a new class of chromophore modified anthracenedione anticancer agents. Synthesis and activity against murine leukemias

Journal of Medicinal Chemistry
1988.0

Abstract

The synthesis of the benzothiopyranoindazoles, a new class of chromophore modified anthracenediones related to mitoxantrone, is described. In this structural class the quinone moiety, which is believed to be responsible for the cardiotoxicity of the anthracyclines, has been designed out. The synthesis of the benzothiopyranoindazoles was carried out by a multistep sequence from requisite 1-chloro-4-nitro-9H-thioxanthen-9-one precursors. Reaction with a monoalkylhydrazine gave a 5-nitrobenzothiopyranoindazole adduct, which was catalytically reduced to a corresponding C-5 anilino intermediate. Alkylation of 7 with a requisite X(CH2)nNR1R2 (X = Cl, Br; R1, R2 = H, alkyl, acyl; n = 2,3) provided target "two-armed" benzothiopyranoindazoles or A-ring methoxy and/or side chain acyl intermediates, which could be converted to 3 by appropriate deprotection methodologies. Alternatively, certain target compounds 3 were synthesized by reaction of 7 with appropriately functionalized glycine precursors under Schotten-Bauman or BOP chloride condensation conditions to provide C-5 acylamino intermediates, followed by Red-Al reduction and deprotection steps. Described also is the synthesis of selected benzothiopyranoindazole congeners with proximal acylamino side chains at C-5 and B-ring sulfone functionality at S-6. Potent activity was demonstrated against murine L1210 leukemia in vitro (IC50 = 10(-7)-10(-9) M) as well as against P388 leukemia in vivo over a wide range of structural variants. In general, activity against the P388 line was maximized by (a) a basic side chain at N-2 and a dibasic side chain at C-5 with primary or secondary distal amine substitution, (b) certain patterns of A-ring hydroxylation with 8-OH and 9-OH most favorable, and (c) sulfide oxidation state at S-6. Besides having curative activity against the P388 line, the more active compounds were curative against murine B-16 melanoma in vivo. On the basis of their exceptional broad-spectrum in vivo anticancer activity, selected compounds in this series have been chosen for development toward clinical trials.

Knowledge Graph

Similar Paper

Benzothiopyranoindazoles, a new class of chromophore modified anthracenedione anticancer agents. Synthesis and activity against murine leukemias
Journal of Medicinal Chemistry 1988.0
Anthrapyrazole anticancer agents. Synthesis and structure-activity relationships against murine leukemias
Journal of Medicinal Chemistry 1987.0
6,9-Bis[(aminoalkyl)amino]benzo[g]isoquinoline-5,10-diones. A Novel Class of Chromophore-Modified Antitumor Anthracene-9,10-diones: Synthesis and Antitumor Evaluations
Journal of Medicinal Chemistry 1994.0
6-[(Aminoalkyl)amino]-substituted 7H-benzo[e]perimidin-7-ones as novel antineoplastic agents. Synthesis and biological evaluation
Journal of Medicinal Chemistry 1993.0
Chromophore-Modified Antitumor Anthracenediones: Synthesis, DNA Binding, and Cytotoxic Activity of 1,4-Bis[(aminoalkyl)amino]benzo[g]phthalazine-5,10-diones
Journal of Medicinal Chemistry 1995.0
Design, Synthesis, and Antiproliferative Activity of Some New Pyrazole-Fused Amino Derivatives of the Pyranoxanthenone, Pyranothioxanthenone, and Pyranoacridone Ring Systems:  A New Class of Cytotoxic Agents
Journal of Medicinal Chemistry 2002.0
5-[(Aminoalkyl)amino]-substituted anthra[1,9-cd]pyrazol-6(2H)-ones as novel anticancer agents. Synthesis and biological evaluation
Journal of Medicinal Chemistry 1984.0
Synthesis of unsymmetrically substituted 1,4-bis[(aminoalkyl)amino]anthracene-9,10-diones as potential antileukemic agents
Journal of Medicinal Chemistry 1989.0
Synthesis and antitumor activities of 5-methyl-1- and 2-[[2-dimethylaminoethyl]amino]-aza-thiopyranoindazoles
Bioorganic & Medicinal Chemistry Letters 2000.0
Synthesis and Antitumor Activity of 4-Aminomethylthioxanthenone and 5-Aminomethylbenzothiopyranoindazole Derivatives
Journal of Medicinal Chemistry 1998.0