Structure-activity relationships of antineoplastic agents in multidrug resistance

Journal of Medicinal Chemistry
1990.0

Abstract

Clinical resistance to many antineoplastic agents is a major cause of treatment failure. The well-documented phenomenon addressed as multidrug resistance (MDR) allows cells to withstand exposure to lethal doses of drugs with dissimilar chemical structures, modes of action, and physicochemical properties. In one of the earliest studies on MDR, Biedler and Riehm in an attempt to explain the cross-resistance profile of actinomycin D resistant Chinese hamster cells suggested that molecular weight was an important determinant. Our statistical analysis of their data validates their claim and indeed strongly demonstrates that cross resistance is enhanced by the increased size and hydrophobicity of the antitumor agent. Our preliminary studies with methotrexate-resistant L1210 cells indicates that cross resistance is increased in the case of moderate-sized, hydrophilic drugs. These two studies and others suggest that current chemotherapy regimens may be improved by treating resistant cells with antineoplastic agents displaying physicochemical characteristics opposite to that of the original inducing agent.

Knowledge Graph

Similar Paper

Structure-activity relationships of antineoplastic agents in multidrug resistance
Journal of Medicinal Chemistry 1990.0
Structure–Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and Its Analogues
Journal of Medicinal Chemistry 2011.0
Comparative structure-activity relationships of antifolate triazines inhibiting murine tumor cells sensitive and resistant to methotrexate
Journal of Medicinal Chemistry 1984.0
Inhibition by 5-(substituted-benzyl)-2,4-diaminopyrimidines of murine tumor (L5178Y) cell cultures sensitive to and resistant to methotrexate. Further evidence for the sensitivity of resistant cells to hydrophobic drugs
Journal of Medicinal Chemistry 1982.0
Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
Journal of Medicinal Chemistry 2012.0
Structure–Activity Relationships of 8-Hydroxyquinoline-Derived Mannich Bases with Tertiary Amines Targeting Multidrug-Resistant Cancer
Journal of Medicinal Chemistry 2022.0
Synthesis and Evaluation of (2-(4-Methoxyphenyl)-4-quinolinyl)(2-piperidinyl)methanol (NSC23925) Isomers To Reverse Multidrug Resistance in Cancer
Journal of Medicinal Chemistry 2012.0
New 1,3-dioxolane and 1,3-dioxane derivatives as effective modulators to overcome multidrug resistance
Bioorganic & Medicinal Chemistry 2007.0
A comparison of the inhibition of growth of methotrexate-resistant and -sensitive leukemia cells in culture by triazines. Evidence for a new mechanism of cell resistance to methotrexate
Journal of Medicinal Chemistry 1982.0
Doxorubicin analogs incorporating chemically reactive substituents
Journal of Medicinal Chemistry 1991.0