Muscarinic receptor binding profile of para-substituted caramiphen analogs

Journal of Medicinal Chemistry
1991.0

Abstract

Para-substituted analogues of the antimuscarinic agent caramiphen were synthesized and evaluated for their ability to bind to the M1 and M2 subtypes of the muscarinic receptor. The purpose of the set was to look for a possible relationship in binding affinity or receptor subtype selectivity with aromatic substituent parameters such as Hammett's sigma or Hansch's pi values. It is felt this could be determined initially with only four properly chosen substituents. In this approach, substituents were chosen which have an extreme value for sigma and for pi, in a positive and negative direction, in all combinations. The substituents chosen for examination were amino (-sigma, -pi); 1-pyrrolidinyl (-sigma, +pi); 1-tetrazolyl (+sigma, -pi), and iodo (+sigma, +pi). It was determined in this research that caramiphen binds with high affinity (Ki = 1.2 nM) and is selective for the M1 over M2 muscarinic receptor subtype (26-fold). An examination of para-substitution reveals that compounds with electron-withdrawing (+sigma) substituents showed M1 selectivity, while the derivatives with electron-donating groups (-sigma) were nonselective in the binding assays. On the basis of this finding, the nitro and cyano derivatives were prepared and found to be M1 selective. The + sigma derivatives showed a decrease in M2 affinity while the p-nitro and p-iodo derivatives retained approximately equal affinity as caramiphen for the M1 site. The nitro- and iodocaramiphen derivatives were as potent (M1, Ki = 5.52 and 2.11 nM, respectively) and showed a greater selectivity of M1 over M2 binding than the M1 prototypical agent pirenzepine (M1, Ki = 5.21 nM).

Knowledge Graph

Similar Paper

Muscarinic receptor binding profile of para-substituted caramiphen analogs
Journal of Medicinal Chemistry 1991.0
Phenyl-substituted analogs of oxotremorine as muscarinic antagonists
Journal of Medicinal Chemistry 1992.0
Muscarinic agonist, (±)-quinuclidin-3-yl-(4-fluorophenethyl)(phenyl)carbamate: High affinity, but low subtype selectivity for human M1 – M5 muscarinic acetylcholine receptors
Bioorganic & Medicinal Chemistry Letters 2019.0
Antimuscarinic 3-(2-Furanyl)quinuclidin-2-ene Derivatives:  Synthesis and Structure−Activity Relationships
Journal of Medicinal Chemistry 1997.0
Design and pharmacology of quinuclidine derivatives as M2-selective muscarinic receptor ligands
Bioorganic & Medicinal Chemistry Letters 2001.0
Synthesis and muscarinic receptor activity of ester derivatives of 2-substituted 2-azabicyclo[2.2.1]heptan-5-ol and -6-ol
Journal of Medicinal Chemistry 1992.0
Synthesis, molecular modeling studies, and muscarinic receptor activity of azaprophen analogs
Journal of Medicinal Chemistry 1991.0
Influence of Amine Substituents on 5-HT2A versus 5-HT2C Binding of Phenylalkyl- and Indolylalkylamines
Journal of Medicinal Chemistry 1994.0
Regiospecific Introduction of Halogens on the 2-Aminobiphenyl Subunit Leading to Highly Potent and Selective M3 Muscarinic Acetylcholine Receptor Antagonists and Weak Inverse Agonists
Journal of Medicinal Chemistry 2020.0
Structure−Activity Relationships of Dimethindene Derivatives as New M<sub>2</sub>-Selective Muscarinic Receptor Antagonists
Journal of Medicinal Chemistry 2003.0