Synthesis and in vitro evaluation of 2,3-dimethoxy-5-(fluoroalkyl)-substituted benzamides: high-affinity ligands for CNS dopamine D2 receptors

Journal of Medicinal Chemistry
1991.0

Abstract

A number of 2,3-dimethoxy-5-(fluoroalkyl)-N-[(1-ethyl-2- pyrrolidinyl)methyl]benzamides (with or without a 6-hydroxy group) were synthesized and evaluated as dopamine D2 receptor ligands. The parent acids were synthesized via the Claisen rearrangement of the appropriate O-allyl ethers, which were derived from o-vanillic acid or 2,3-dimethoxysalicylic acid. A decrease in reactivity was found to be characteristic of pentasubstituted benzoates, and difficulties were encountered with the introduction of fluorine onto the ethyl side chains. The (fluoroethyl)- and (fluoropropyl)salicylamides were 5 times more potent than the corresponding benzamides in inhibiting [3H]spiperone binding to the D2 receptor. These (fluoroalkyl)salicylamides are of potential value for in vivo positron emission tomography (PET) studies upon the basis of their relatively selective, high potency binding affinity for the D2 receptor.

Knowledge Graph

Similar Paper

Synthesis and in vitro evaluation of 2,3-dimethoxy-5-(fluoroalkyl)-substituted benzamides: high-affinity ligands for CNS dopamine D2 receptors
Journal of Medicinal Chemistry 1991.0
N-Fluoroalkylated and N-alkylated analogs of the dopaminergic D-2 receptor antagonist raclopride
Journal of Medicinal Chemistry 1990.0
Potential antipsychotic agents. 9. Synthesis and stereoselective dopamine D-2 receptor blockade of a potent class of substituted (R)-N-[(1-benzyl-2-pyrrolidinyl)methyl]benzamides. Relations to other side chain congeners
Journal of Medicinal Chemistry 1991.0
Synthesis and dopamine receptor affinities of 2-(4-fluoro-3-hydroxyphenyl)ethylamine and N-substituted derivatives
Journal of Medicinal Chemistry 1990.0
Potential antipsychotic agents. 5. Synthesis and antidopaminergic properties of substituted 5,6-dimethoxysalicylamides and related compounds
Journal of Medicinal Chemistry 1990.0
Potential antipsychotic agents. 7. Synthesis and antidopaminergic properties of the atypical highly potent (S)-5-bromo-2,3-dimethoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl]benzamide and related compounds. A comparative study
Journal of Medicinal Chemistry 1990.0
Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands
Journal of Medicinal Chemistry 1992.0
Structure−Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2002.0
Synthesis of 3-(3-hydroxyphenyl)pyrrolidine dopamine D3 receptor ligands with extended functionality for probing the secondary binding pocket
Bioorganic &amp; Medicinal Chemistry Letters 2018.0
(S)-N-[(1-Ethyl-2-pyrrolidinyl)methyl]-5-[125I]iodo-2-methoxybenzamide hydrochloride, a new selective radioligand for dopamine D-2 receptors
Journal of Medicinal Chemistry 1988.0