Structure−Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D3 Receptor Ligands

Journal of Medicinal Chemistry
2002.0

Abstract

The benzamide PB12 (N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide) (1), already reported as potent and selective dopamine D(4) receptor ligand, has been modified searching for structural features that could lead to D(3) receptor affinity. Changes in the aromatic ring linked to N-1 piperazine ring led to the identification of 2-methoxyphenyl and 2,3-dichlorophenyl derivatives (compounds 6 and 13) displaying moderate D(3) affinity (K(i) = 145 and 31 nM, respectively). Intermediate alkyl chain elongation in compounds 1, 6, and 13 improved binding affinity for the D(3) receptor and decreased the D(4) affinity (compounds 18-26). Among these latter compounds, the N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (19) was further modified with the replacement or of the 2,3-dichlorophenyl moiety (compounds 27-30) or of the 3-methoxyphenyl ring (compounds 31-41). In this way, we identified several high-affinity D(3) ligands (0.13 nM < K(i)'s < 4.97 nM) endowed with high selectivity over D(2), D(4), 5-HT(1A), and alpha(1) receptors. In addition, N-[4-[4-(2,3-dimethylphenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (27) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (41) appear to be valuable candidates for positron emission tomography (PET) because of their affinity values, lipophilicity properties, and liability of (11)C labeling in the O-methyl position.

Knowledge Graph

Similar Paper

Structure−Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2002.0
Synthesis of 3-(3-hydroxyphenyl)pyrrolidine dopamine D3 receptor ligands with extended functionality for probing the secondary binding pocket
Bioorganic &amp; Medicinal Chemistry Letters 2018.0
Investigation of various N-heterocyclic substituted piperazine versions of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: Effect on affinity and selectivity for dopamine D3 receptor
Bioorganic &amp; Medicinal Chemistry 2009.0
Further delineation of hydrophobic binding sites in dopamine D2/D3 receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol
Bioorganic &amp; Medicinal Chemistry 2010.0
Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands
Journal of Medicinal Chemistry 2020.0
Synthesis and in vitro evaluation of 2,3-dimethoxy-5-(fluoroalkyl)-substituted benzamides: high-affinity ligands for CNS dopamine D2 receptors
Journal of Medicinal Chemistry 1991.0
Structure–Activity Relationship Study ofN<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization
Journal of Medicinal Chemistry 2012.0
Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action
Journal of Medicinal Chemistry 2008.0
Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands
Journal of Medicinal Chemistry 1992.0
New Pyridobenzodiazepine Derivatives:  Modifications of the Basic Side Chain Differentially Modulate Binding to Dopamine (D<sub>4.2</sub>, D<sub>2L</sub>) and Serotonin (5-HT<sub>2A</sub>) Receptors
Journal of Medicinal Chemistry 2002.0