Conformationally restricted deltorphin analogs

Journal of Medicinal Chemistry
1992.0

Abstract

Conformationally restricted deltorphin analogues were synthesized either through incorporation of cyclic phenylalanine analogues in position 2 or 3 of the peptide sequence or through various side chain-to-side chain cyclizations. Compounds were tested in mu-, delta-, and kappa-receptor selective binding assays and in the guinea pig ileum (GPI) and mouse vas deferens (MVD) bioassays. Replacement of Phe3 in [D-Ala2]deltorphin I with 2-aminoindan-2-carboxylic acid (Aic) or L- or D-2-aminotetralin-2-carboxylic acid (Atc) resulted in agonist compounds which retained the high delta receptor selectivity of the parent peptide. Substitution of a tetrahydroisoquinoline-3-carboxylic acid (Tic) residue in the 2-position of [D-Ala2]deltorphin I and of [Phe4,Nle6]deltorphin produced a partial delta agonist, H-Tyr-Tic-Phe-Asp-Val-Val-Gly-NH2, and a pure delta antagonist, H-Tyr-Tic-Phe-Phe-Leu-Nle-Asp-NH2, respectively. The latter antagonist displayed high delta selectivity (Ki mu/Ki delta = 502) and was a potent antagonist against selective delta agonists in the MVD assay (Ke congruent to 10 nM). Various [D-Ala2]-deltorphin I analogues cyclized between the side chains of Orn (or Lys) and Asp (or Glu) residues substituted in positions 2 and 4, 4 and 7, and 2 and 7 were essentially nonselective. Comparison with corresponding N-terminal tetrapeptide analogues revealed that the C-terminal tripeptide segment in the deltorphin heptapeptides made a crucial contribution to delta affinity and delta selectivity in the case of the agonist peptides but not in the case of the antagonist.

Knowledge Graph

Similar Paper

Conformationally restricted deltorphin analogs
Journal of Medicinal Chemistry 1992.0
Novel Deltorphin Heptapeptide Analogs with Potent .delta. Agonist, .delta. Antagonist, or Mixed .mu. Antagonist/.delta. Agonist Properties
Journal of Medicinal Chemistry 1995.0
Design of cyclic deltorphins and dermenkephalins with a disulfide bridge leads to analogs with high selectivity for .delta.-opioid receptors
Journal of Medicinal Chemistry 1994.0
Phe3-substituted analogs of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by .delta. opioid receptors
Journal of Medicinal Chemistry 1993.0
Design and Synthesis of 1-Aminocycloalkane-1-carboxylic Acid-Substituted Deltorphin Analogues:  Unique δ and μ Opioid Activity in Modified Peptides
Journal of Medicinal Chemistry 1996.0
Synthesis and structure-activity relationships of deltorphins analogs
Journal of Medicinal Chemistry 1991.0
Para-substituted Phe3 deltorphin analogs: enhanced selectivity of halogenated derivatives for .sigma. opioid receptor sites
Journal of Medicinal Chemistry 1992.0
Dermorphin and deltorphin heptapeptide analogues: replacement of Phe residue by Dmp greatly improves opioid receptor affinity and selectivity
Bioorganic & Medicinal Chemistry Letters 2002.0
Topographical requirements for delta opioid ligands: The synthesis and biological properties of a cyclic analogue of deltorphin I
Bioorganic & Medicinal Chemistry Letters 1992.0
Opioid Receptor Binding Requirements for the .delta.-Selective Peptide Deltorphin I: Phe3 Replacement with Ring-Substituted and Heterocyclic Amino Acids
Journal of Medicinal Chemistry 1995.0