Phe3-substituted analogs of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by .delta. opioid receptors

Journal of Medicinal Chemistry
1993.0

Abstract

In order to study the contribution of the electronic, hydrophobic, and conformational properties of the amino acid residue at position 3 in deltorphin C on binding to delta and mu opioid receptors, a series of 5- and 6-membered ring and bicyclic amino acid replacements at position 3 were prepared by solution synthesis methods. In general, the substitutions were deleterious for high delta affinity (Ki delta) and delta selectivity (Ki mu/Ki delta). However, several notable exceptions were recognized: peptides containing the constrained, bicyclic structures Aic3 and (R or S) Atc3 enhanced delta affinity, but only the latter increased delta selectivity 4-fold (= 2475) relative to deltorphin C (= 661); at the other extreme, delta affinity of N alpha MePh3 fell 900-fold. Bioassays of [N alpha MePhe3]-, [(R or S)C alpha MePhe3]-, [Tic3]-, [Aic3]-, and [(R or S) Atc3]deltorphin C using guinea pig ileum (GPI) and mouse vas deferens (MVD) for mu and delta bioactivity, respectively, revealed a significant correlation (r = 0.916) between MVD bioactivity and delta binding in brain membranes. [(R or S)Atc3]deltorphin C also exhibited the highest biological selectivity (GPI/MVD) (= 3,522), which was 3-fold greater than that observed for deltorphin C. Molecular modelling of [N alpha MePhe3]- and [(S)Atc3]deltorphin C established that these amino acid replacements for Phe3 produce alterations in the backbone (phi,psi) and side-chain (chi 1,chi 2) dihedrals which critically affect the flexibility of the peptide and possibly limit accessible conformations for its alignment within the delta opioid receptor. The data provide evidence that the delta receptor is sensitive to changes in the composition, conformation, and orientation of the side chain of residue 3 of a linear opioid heptapeptide.

Knowledge Graph

Similar Paper

Phe3-substituted analogs of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by .delta. opioid receptors
Journal of Medicinal Chemistry 1993.0
Design and Synthesis of 1-Aminocycloalkane-1-carboxylic Acid-Substituted Deltorphin Analogues:  Unique δ and μ Opioid Activity in Modified Peptides
Journal of Medicinal Chemistry 1996.0
Substitution on the Phe3 aromatic ring in cyclic .delta. opioid receptor-selective dermorphin/deltorphin tetrapeptide analogs: electronic and lipophilic requirements for receptor affinity
Journal of Medicinal Chemistry 1992.0
Conformationally restricted deltorphin analogs
Journal of Medicinal Chemistry 1992.0
Opioid Receptor Binding Requirements for the .delta.-Selective Peptide Deltorphin I: Phe3 Replacement with Ring-Substituted and Heterocyclic Amino Acids
Journal of Medicinal Chemistry 1995.0
Helix-Inducing α-Aminoisobutyric Acid in Opioid Mimetic Deltorphin C Analogues
Journal of Medicinal Chemistry 1997.0
Para-substituted Phe3 deltorphin analogs: enhanced selectivity of halogenated derivatives for .sigma. opioid receptor sites
Journal of Medicinal Chemistry 1992.0
Dermorphin and deltorphin heptapeptide analogues: replacement of Phe residue by Dmp greatly improves opioid receptor affinity and selectivity
Bioorganic & Medicinal Chemistry Letters 2002.0
Design of cyclic deltorphins and dermenkephalins with a disulfide bridge leads to analogs with high selectivity for .delta.-opioid receptors
Journal of Medicinal Chemistry 1994.0
Synthesis and structure-activity relationships of deltorphins analogs
Journal of Medicinal Chemistry 1991.0