Synthesis and biological evaluation of conformationally restricted 2-(1-pyrrolidinyl)-N-[2-(3,4-dichlorophenyl)ethyl]-N-methylethylenediamines as .sigma. receptor ligands. 1. Pyrrolidine, piperidine, homopiperidine, and tetrahydroisoquinoline classes

Journal of Medicinal Chemistry
1992.0

Abstract

The synthesis and sigma receptor affinity of a series of conformationally restricted derivatives of 2-(1-pyrrolidinyl)-N-[2-(3,4-dichlorophenyl)ethyl]-N-methylethylenedi amine (1) is described. The pyrrolidinyl (or N,N-dialkyl),ethylenediamine,N-alkyl, and phenylethyl portions of this sigma receptor pharmacophore were restricted by its incorporation into 1,2-cyclohexanediamine-, pyrrolidine-, piperidine-, homopiperidine-, and tetrahydroisoquinoline-containing ligands. The sigma receptor binding affinities of these compounds were determined using [3H](+)-pentazocine in guinea pig brain homogenates. The synthesis of all but one class was achieved by acylation and alane reduction of the appropriate diamine precursors whose synthesis is also reported. sigma receptor affinities ranged from 1.34 nM for 6,7-dichloro-2-[2-(1-pyrrolidinyl)ethyl]tetrahydroisoquinoline (12) to 455 nM for (1R,2R)-trans-N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2- (1-pyrrolidinyl)cyclohexylamine [(-)-4]. In this displacement assay, (+)-pentazocine exhibited a Ki of 3.1 nM while DTG and haloperidol showed Ki values of 27.7 and 3.7 nM, respectively. The conformationally free parent compound 1 exhibited a Ki value of 2.1 nM. Comparison of both the sigma receptor affinities and nitrogen atom geometry of the compounds revealed that a gauche relation of the nitrogen atoms of cis-1,2-cyclohexanediamines is not imperative for high affinity as we had previously thought. It is highly likely that nitrogen lone pair orientations and steric factors on the aliphatic portions of these ligands play a major role in the sigma receptor binding of this pharmacophore.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of conformationally restricted 2-(1-pyrrolidinyl)-N-[2-(3,4-dichlorophenyl)ethyl]-N-methylethylenediamines as .sigma. receptor ligands. 1. Pyrrolidine, piperidine, homopiperidine, and tetrahydroisoquinoline classes
Journal of Medicinal Chemistry 1992.0
Synthesis and evaluation of conformationally restricted N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamines at .sigma. receptors. 2. Piperazines, bicyclic amines, bridged bicyclic amines, and miscellaneous compounds
Journal of Medicinal Chemistry 1993.0
Synthesis of bridged piperazines with σ receptor affinity
European Journal of Medicinal Chemistry 2007.0
A new approach to the design of .sigma.-2-selective ligands: synthesis and evaluation of N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine-related polyamines at .sigma.-1 and .sigma.-2 receptor subtypes
Journal of Medicinal Chemistry 1994.0
4-(Tetralin-1-yl)- and 4-(Naphthalen-1-yl)alkyl Derivatives of 1-Cyclohexylpiperazine as σ Receptor Ligands with Agonist σ<sub>2</sub> Activity
Journal of Medicinal Chemistry 2004.0
Novel Spiropiperidines as Highly Potent and Subtype Selective σ-Receptor Ligands. Part 1
Journal of Medicinal Chemistry 2002.0
New combination of pharmacophoric elements of potent σ1 ligands: Design, synthesis and σ receptor affinity of aminoethyl substituted tetrahydrobenzothiophenes
European Journal of Medicinal Chemistry 2013.0
Synthesis and binding characteristics of potential SPECT imaging agents for .sigma.-1 and .sigma.-2 binding sites
Journal of Medicinal Chemistry 1993.0
Design, synthesis and receptor affinity of novel conformationally restricted σ ligands based on the [4.3.3]propellane scaffold
European Journal of Medicinal Chemistry 2013.0
Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands
European Journal of Medicinal Chemistry 2013.0