A new approach to the design of .sigma.-2-selective ligands: synthesis and evaluation of N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine-related polyamines at .sigma.-1 and .sigma.-2 receptor subtypes

Journal of Medicinal Chemistry
1994.0

Abstract

A series of polyamines based on the high affinity sigma receptor ligand N-[2-(3,4-dichlorophenyl)-ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine (3) were developed and evaluated for their binding characteristics at sigma-1 and sigma-2 receptor subtypes. The data indicated that a considerable degree of structural variation is possible while still retaining nanomolar affinity at sigma receptors. As the structure of the polyamines was varied, their binding at sigma-1 and sigma-2 subtypes showed quite different and in some cases opposite trends, supporting the belief that these are pharmacologically distinct entities. Polyamines containing two nitrogen atoms showed optimal binding at both sigma-1 and sigma-2 receptor subtypes. Although additional nitrogen atoms resulted in decreased affinity at sigma-1 and sigma-2 subtypes, an increase in selectivity for sigma-2 subtypes was evident; the parent 3 showed greater selectivity for sigma-1 subtypes. Internitrogen spacings had a large effect on binding affinity and subtype selectivity. For example, the difference between N-[3-(1-pyrrolidinyl)propyl]-N'-(3,4-dichlorobenzyl)-N,N'- dimethylethylenediamine (8) [K(i) = 29.9 nM at sigma-1 receptor and 18.3 nM at sigma-2 receptor] to N-[3-(1-pyrrolidinyl)propyl]-N'-(3,4-dichlorobenzyl)- N,N'-dimethylethylenediamine (10) [K(i) = 1.49 nM at sigma-1 receptor and 12.1 nM at sigma-2 receptor] illustrates the importance of internitrogen spacing. Triamines 11 and 13 [Ki(sigma-2)/K(i)(sigma-1) = 0.19 and 0.10, respectively] containing the N-N-N-Ar spacings 3-3-2 and 4-4-2, proved to be the most sigma-2 subtype selective of the 15 polyamines examined in this study. The N-N-N spacings appear to be an important factor in their sigma-2 subtype selectivity. These compounds will serve as templates in the design of still further sigma-2 subtype selective ligands. The pyrrolidine ring (present in most of the polyamines tested in this series) proved to be an important recognition site for sigma receptor binding activity. Furthermore, alkyl substitution also appears to be important since the stripped down polyamines N-[2-(3,4-dichlorophenyl)ethyl]ethylenediamine (15) and N1-[2-(3,4-dichlorophenyl)ethyl]diethylenetriamine (16) exhibited relatively low binding affinity.

Knowledge Graph

Similar Paper

A new approach to the design of .sigma.-2-selective ligands: synthesis and evaluation of N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine-related polyamines at .sigma.-1 and .sigma.-2 receptor subtypes
Journal of Medicinal Chemistry 1994.0
Synthesis and evaluation of conformationally restricted N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamines at .sigma. receptors. 2. Piperazines, bicyclic amines, bridged bicyclic amines, and miscellaneous compounds
Journal of Medicinal Chemistry 1993.0
Synthesis and biological evaluation of conformationally restricted 2-(1-pyrrolidinyl)-N-[2-(3,4-dichlorophenyl)ethyl]-N-methylethylenediamines as .sigma. receptor ligands. 1. Pyrrolidine, piperidine, homopiperidine, and tetrahydroisoquinoline classes
Journal of Medicinal Chemistry 1992.0
Novel Sigma Receptor Ligands:  Synthesis and Biological Profile
Journal of Medicinal Chemistry 2007.0
Novel Spiropiperidines as Highly Potent and Subtype Selective σ-Receptor Ligands. Part 1
Journal of Medicinal Chemistry 2002.0
Synthesis and binding characteristics of potential SPECT imaging agents for .sigma.-1 and .sigma.-2 binding sites
Journal of Medicinal Chemistry 1993.0
.sigma. Ligands with Subnanomolar Affinity and Preference for the .sigma.2 Binding Site. 1. 3-(.omega.-Aminoalkyl)-1H-indoles
Journal of Medicinal Chemistry 1995.0
Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands
European Journal of Medicinal Chemistry 2013.0
One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives
Bioorganic & Medicinal Chemistry Letters 2016.0
4-(Tetralin-1-yl)- and 4-(Naphthalen-1-yl)alkyl Derivatives of 1-Cyclohexylpiperazine as σ Receptor Ligands with Agonist σ<sub>2</sub> Activity
Journal of Medicinal Chemistry 2004.0