Cocaine and 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Ester and Amide Analogs. New High-Affinity and Selective Compounds for the Dopamine Transporter

Journal of Medicinal Chemistry
1995.0

Abstract

Several 2 beta-carboxylic acid ester and amide analogues of cocaine and of 3 beta-(4'-substituted phenyl)tropane-2 beta-carboxylic acid were prepared. The binding affinities of these compounds, and of some previously prepared analogues, at the dopamine (DA), norepinephrine (NE), and serotonin (5-HT) transporters were determined. The phenyl esters of 3 beta-(4'-methylphenyl)- and 3 beta-(4'-chlorophenyl)tropane-2 beta-carboxylic acid are highly potent and highly selective for the DA transporter. The isopropyl esters of 3 beta-(4'-chlorophenyl)- and 3 beta-(4'-iodophenyl)tropane-2 beta-carboxylic acid also possess high DA affinity and show significant DA transporter selectivity. Similarly, the phenyl and isopropyl ester analogues of cocaine are much more selective for the DA transporter than cocaine. Tertiary amide analogues of cocaine and of 3 beta-(4'-substituted phenyl)tropane-2 beta-carboxylic acids are more potent inhibitors of radioligand binding at the DA transporter than the primary and secondary amide analogues. In particular, 3 beta-(4'-chlorophenyl)tropane-2 beta-N-morpholinocarboxamide as well as the 3 beta-(4'-chlorophenyl)- and 3 beta-(4'-iodophenyl)tropane-2 beta-N- pyrrolidinocarboxamides possess high affinity and selectivity for the DA transporter. The N,N-dimethylamide cocaine analogue is the most selective cocaine amide derivative for the DA transporter. High correlation between the inhibition of radioligand binding and inhibition of uptake at the DA, NE, and 5-HT transporter was found for a selected group of analogues. Within this group, one compound, the isopropyl ester of 3 beta-(4'-iodophenyl)-tropane-2 beta-carboxylic acid, was found to be more potent in the inhibition of radioligand binding than in the inhibition of DA uptake. Taken together with its high potency and selectivity at the DA transporter, this suggests that this compound may be a lead in the development of a cocaine antagonist.

Knowledge Graph

Similar Paper

Cocaine and 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Ester and Amide Analogs. New High-Affinity and Selective Compounds for the Dopamine Transporter
Journal of Medicinal Chemistry 1995.0
3α-(4‘-Substituted phenyl)tropane- 2β-carboxylic Acid Methyl Esters:  Novel Ligands with High Affinity and Selectivity at the Dopamine Transporter
Journal of Medicinal Chemistry 1996.0
Secondary Amine Analogs of 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Esters and N-Norcocaine Exhibit Enhanced Affinity for Serotonin and Norepinephrine Transporters
Journal of Medicinal Chemistry 1994.0
Monoamine Transporter Binding, Locomotor Activity, and Drug Discrimination Properties of 3-(4-Substituted-phenyl)tropane-2-carboxylic Acid Methyl Ester Isomers
Journal of Medicinal Chemistry 2004.0
Synthesis, Dopamine Transporter Affinity, Dopamine Uptake Inhibition, and Locomotor Stimulant Activity of 2-Substituted 3β-Phenyltropane Derivatives
Journal of Medicinal Chemistry 1997.0
Synthesis and Ligand Binding Study of 3.beta.-(4'-Substituted phenyl)-2.beta.-(heterocyclic)tropanes
Journal of Medicinal Chemistry 1995.0
Novel 4'-Substituted and 4',4''-Disubstituted 3.alpha.-(Diphenylmethoxy)tropane Analogs as Potent and Selective Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 1995.0
Synthesis and Transporter Binding Properties of 2,3-Diphenyltropane Stereoisomers. Comparison to 3β-Phenyltropane-2β-carboxylic Acid Esters
Journal of Medicinal Chemistry 1997.0
Synthesis and binding affinities of 2β-(3-iodoallyloxycarbonyl)-3β-(4-substituted-aryl)tropane analogues as ligands for the dopamine transporter studies
Bioorganic & Medicinal Chemistry Letters 2001.0
Synthesis and Biological Properties of New 2β-Alkyl- and 2β-Aryl-3-(substituted phenyl)tropane Derivatives:  Stereochemical Effect of C-3 on Affinity and Selectivity for Neuronal Dopamine and Serotonin Transporters
Journal of Medicinal Chemistry 1998.0