Synthesis and Biological Properties of New 2β-Alkyl- and 2β-Aryl-3-(substituted phenyl)tropane Derivatives:  Stereochemical Effect of C-3 on Affinity and Selectivity for Neuronal Dopamine and Serotonin Transporters

Journal of Medicinal Chemistry
1998.0

Abstract

In our efforts to identify molecules that might act as cocaine antagonists or cocaine partial agonists, we have been involved in efforts to further elucidate the nature of cocaine's binding to the dopamine transporter (DAT) through strategic modifications of its structure. In the case of the substituent located at the 2-position of the tropane ring, studies have revealed the ability of the transporter to accommodate groups of diverse structure, including ester, ketone, alkyl, alkenyl, heterocyclic, and aryl substituents, without loss of DAT binding affinity. In the present study, we report our results pertaining to the ability of the DAT to accommodate the WIN-type structures possessing alkyl or aryl groups at the 2-position and which adopt either a chair or a boat conformation of the tropane ring. Moreover, we discuss the influence of the stereochemistry of these compounds in their selectivity for the DAT versus the serotonin transporter (5HTT). Additionally, we point out the importance of using Ki values rather than IC50 values when making such comparisons of transporter selectivity. One of the most interesting compounds identified in the present work is a 2, 3-diaryltropane 22 in a boat conformation that is highly selective (69-fold) for the DAT over the 5HTT. The ability to prepare this compound as well as related structures by our oxidopyridinium betaine-based dipolar cycloaddition strategy further underscores the versatility of this particular chemical approach to the preparation of diverse tropane analogues. The use of the optically pure olefin p-tolyl vinyl sulfoxide as the dipolarophile in this reaction allows access to these novel tropanes in nonracemic form.

Knowledge Graph

Similar Paper

Synthesis and Biological Properties of New 2β-Alkyl- and 2β-Aryl-3-(substituted phenyl)tropane Derivatives:  Stereochemical Effect of C-3 on Affinity and Selectivity for Neuronal Dopamine and Serotonin Transporters
Journal of Medicinal Chemistry 1998.0
Synthesis, Structure, Dopamine Transporter Affinity, and Dopamine Uptake Inhibition of 6-Alkyl-3-benzyl-2-[(methoxycarbonyl)methyl]tropane Derivatives
Journal of Medicinal Chemistry 1997.0
Structure−Activity Relationship Comparison of (S)-2β-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes and (R)-2β-Substituted 3β-(3,4-Dichlorophenyl)tropanes at the Dopamine Transporter
Journal of Medicinal Chemistry 2003.0
Synthesis and Biological Evaluation of 2-Substituted 3β-Tolyltropane Derivatives at Dopamine, Serotonin, and Norepinephrine Transporters
Journal of Medicinal Chemistry 2002.0
Synthesis and Transporter Binding Properties of 2,3-Diphenyltropane Stereoisomers. Comparison to 3β-Phenyltropane-2β-carboxylic Acid Esters
Journal of Medicinal Chemistry 1997.0
Synthesis and Monoamine Transporter Binding Properties of 2,3-Diaryltropanes
Journal of Medicinal Chemistry 2005.0
Synthesis and receptor binding properties of 2β-alkynyl and 2β-(1,2,3-triazol)substituted 3β-(substituted phenyl)tropane derivatives
Bioorganic & Medicinal Chemistry 2008.0
Structure−Activity Relationship Studies on a Novel Series of (S)-2β-Substituted 3α-[Bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane Analogues for in Vivo Investigation
Journal of Medicinal Chemistry 2006.0
Cocaine and 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Ester and Amide Analogs. New High-Affinity and Selective Compounds for the Dopamine Transporter
Journal of Medicinal Chemistry 1995.0
Synthesis, Dopamine Transporter Affinity, Dopamine Uptake Inhibition, and Locomotor Stimulant Activity of 2-Substituted 3β-Phenyltropane Derivatives
Journal of Medicinal Chemistry 1997.0