Characterization of Potent and Selective Antagonists at Postsynaptic 5-HT1A Receptors in a Series of N4-Substituted Arylpiperazines

Journal of Medicinal Chemistry
1995.0

Abstract

Benzocycloalkyl and benzocycloalkenyl moities linked, directly or via an alkyl chain, to oxygen-bearing heteroarylpiperazines were synthesized, in an attempt to obtain potent and selective antagonists at postsynaptic 5-HT1A receptors. From the numerous arylpiperazines described in the literature, 1-(2,3-dihydro-1,4-benzodioxin-5-yl)piperazine (3a) was chosen as a model of an arylpiperazine in view of its selectivity for 5-HT1A receptors versus alpha 1-, alpha 2-, and beta-adrenergic receptors, as well as dopamine D1 and D2 receptors. Two other closely-related arylpiperazines, 1-(1,5-benzodioxepin-6-yl)piperazine (3b) and 1-(benzofuran-7-yl)piperazine (3c), were also examined in this study. All compounds showed high affinity at 5-HT1A sites (8.10 < or = pKis < or = 9.35), and the majority behaved as antagonists in vivo in blocking the hypothermia induced by the 5-HT1A agonist 8-OH-DPAT in the absence of a marked effect alone at equivalent doses. An in vivo evaluation of dopamine D2 receptor antagonist properties revealed that the majority of compounds was devoid of activity at this site, in marked contrast to BMY 7378 which displayed virtually no selectivity for 5-HT1A versus dopamine D2 receptors. Moreover, six compounds of the present series, 8, 10, 11, 14, 25, and 37, showed > 10-fold selectivity in vitro for 5-HT1A versus alpha 1-adrenergic receptors. Compound 14 displayed an optimal compromise between potency (pKi = 8.75), marked antagonist activity, and selectivity toward alpha 1-adrenergic (81-fold) and dopamine D2 (195-fold) receptors. These characteristics clearly distinguish 14 from previously-reported ligands such as the postsynaptic 5-HT1A antagonist BMY 7378 and the weak partial agonist NAN 190 which, in contrast to the compounds of this series, belong to the well-exemplified class of imido derivatives of (o-methoxyphenyl)piperazines. The availability of 14 (S 15535) should facilitate the further elucidation of the functional role and potential therapeutic significance of 5-HT1A receptors.

Knowledge Graph

Similar Paper

Characterization of Potent and Selective Antagonists at Postsynaptic 5-HT1A Receptors in a Series of N4-Substituted Arylpiperazines
Journal of Medicinal Chemistry 1995.0
Synthesis and Structure−Activity Relationships of a New Model of Arylpiperazines. 4. 1-[ω-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2,5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2,5-pyrrolidinediones: Study of the Steric Requirements of the Terminal Amide Fragment on 5-HT<sub>1A</sub> Affinity/Selectivity
Journal of Medicinal Chemistry 1999.0
New Arylpiperazine 5-HT<sub>1A</sub>Receptor Ligands Containing the Pyrimido[2,1-f]purine Fragment:  Synthesis, in Vitro, and in Vivo Pharmacological Evaluation
Journal of Medicinal Chemistry 2004.0
High Affinity and Selectivity on 5-HT1A Receptor of 1-Aryl-4-[(1-tetralin)alkyl]piperazines. 2
Journal of Medicinal Chemistry 1995.0
Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin
Bioorganic &amp; Medicinal Chemistry 2011.0
Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT<sub>1A</sub> Serotonin Receptor Ligands
Journal of Medicinal Chemistry 2008.0
Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT1A receptor agonists
European Journal of Medicinal Chemistry 2017.0
Synthesis of a new series of aryl/heteroarylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin with low nanomolar 5-HT 1A affinities
European Journal of Medicinal Chemistry 2017.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
Novel class of arylpiperazines containing N-acylated amino acids: Their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation
Bioorganic &amp; Medicinal Chemistry 2007.0