Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin

Bioorganic & Medicinal Chemistry
2011.0

Abstract

The study is focused on (2-alkoxy)phenylpiperazine derivatives of 1-(2-hydroxy-3-(4-arylpiperazin-1-yl)propyl)-5,5-diphenylimidazolidine-2,4-dione with alkyl or ester substituents at N3 of hydantoin ring, as well as a new designed and synthesized series of compounds with a free N3H group or N3-acetic acid terminal fragment. The compounds were assessed on their affinity for 5-HT(1A) and α(1)-adrenoceptors and evaluated in functional bioassays for antagonistic properties. Classical molecular mechanics (MMFFs force field, MCMM, MacroModel) and DFT methods (B3LYP functional, Gaussian 0.3) were used to investigate 3D structure of the compounds. SAR analysis was based on two pharmacophore models, the one described by Barbaro et al. for α(1)-adenoceptor antagonist and the model of Lepailleur et al. for 5-HT(1A) receptor ligands. All compounds exhibited significant to moderate affinities for 5-HT(1A) receptors in nanomolar range (7-610nM). The highest activity (7nM) and selectivity (17.38) for 5-HT(1A) was observed for 1-(3-(4-(2-ethoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (13a). Among new synthesized compounds 1-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5,5-diphenylimidazolidine-2,4-dione hydrochloride (20a) displayed the highest affinity (16.6nM) and selectivity (5.72) for α(1)-AR.

Knowledge Graph

Similar Paper

Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin
Bioorganic & Medicinal Chemistry 2011.0
Synthesis, α1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin
Bioorganic & Medicinal Chemistry 2008.0
Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties
Bioorganic & Medicinal Chemistry 2012.0
SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives
European Journal of Medicinal Chemistry 2014.0
Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: Further validation of a pharmacophore model for α1-adrenoceptor antagonists
Bioorganic & Medicinal Chemistry Letters 2008.0
Synthesis and Structure−Activity Relationships of a New Model of Arylpiperazines. 4. 1-[ω-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2,5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2,5-pyrrolidinediones: Study of the Steric Requirements of the Terminal Amide Fragment on 5-HT<sub>1A</sub> Affinity/Selectivity
Journal of Medicinal Chemistry 1999.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
Antiarrhythmic properties of phenylpiperazine derivatives of phenytoin with α1-adrenoceptor affinities
Bioorganic &amp; Medicinal Chemistry 2012.0
[[(Arylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone Derivatives as High-Affinity, Selective 5-HT<sub>1A</sub> Receptor Ligands
Journal of Medicinal Chemistry 1997.0
α<sub>1</sub>-Adrenoceptor Antagonists. 4. Pharmacophore-Based Design, Synthesis, and Biological Evaluation of New Imidazo-, Benzimidazo-, and Indoloarylpiperazine Derivatives
Journal of Medicinal Chemistry 2002.0