Computer-Aided Molecular Modeling, Synthesis, and Biological Evaluation of 8-(Benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a Novel Benzodiazepine Receptor Agonist Ligand

Journal of Medicinal Chemistry
1995.0

Abstract

Using computer-aided conformational analysis, based on molecular dynamics simulation, cluster analysis, and Monte Carlo techniques, we have designed and synthesized compounds in which a benzyloxy substituent has been incorporated into a series of pyrazoloquinoline benzodiazepine receptor (BZR) ligands. Earlier studies had shown that the benzyloxy group could act as part of the agonist pharmacophoric determinant in the beta-carboline ring system. Furthermore, the agonist beta-carboline had been correlated with a binding site orientation and volume fit for an agonist 6-phenylimidazobenzodiazepine carboxylate. The present study was undertaken to determine whether the benzyloxy substituent could be used as an agonist pharmacophoric descriptor for the phenylpyrazolo[4,3-c]quinolin-3-one BZR ligands. The results of a determination of GABA shift ratios for the synthetic ligands indicate that 8-(benzyloxy)-2-phenylpyrazolo[4,3-c]quinolin-3-one can be predicted to be an agonist at the BZR.

Knowledge Graph

Similar Paper

Computer-Aided Molecular Modeling, Synthesis, and Biological Evaluation of 8-(Benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a Novel Benzodiazepine Receptor Agonist Ligand
Journal of Medicinal Chemistry 1995.0
Structure-activity relationship studies at benzodiazepine receptor (BZR): a comparison of the substituent effects of pyrazoloquinolinone analogs
Journal of Medicinal Chemistry 1993.0
Novel 3-aroylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted, ligands at GABAA/benzodiazepine receptor complex: Synthesis, pharmacological and molecular modeling studies
Bioorganic & Medicinal Chemistry 2008.0
Synthesis of novel 3-substituted .beta.-carbolines as benzodiazepine receptor ligands: probing the benzodiazepine receptor pharmacophore
Journal of Medicinal Chemistry 1988.0
Novel agonists of benzodiazepine receptors: Design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives
Bioorganic & Medicinal Chemistry 2015.0
The agonist pharmacophore of the benzodiazepine receptor. Synthesis of a selective anticonvulsant/anxiolytic
Journal of Medicinal Chemistry 1991.0
Synthesis and Binding Activity of Some Pyrazolo[1,5-c]quinazolines as Tools To Verify an Optional Binding Site of a Benzodiazepine Receptor Ligand
Journal of Medicinal Chemistry 1996.0
Synthesis, binding studies, and structure activity relationships of 1-aryl- and 2-aryl[1]benzopyranopyrazol-4-ones, central benzodiazepine receptor ligands
Journal of Medicinal Chemistry 1988.0
Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism
Journal of Medicinal Chemistry 2009.0
4-Quinolone Derivatives:  High-Affinity Ligands at the Benzodiazepine Site of Brain GABA<sub>A</sub>Receptors. Synthesis, Pharmacology, and Pharmacophore Modeling
Journal of Medicinal Chemistry 2006.0