Novel 3-aroylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted, ligands at GABAA/benzodiazepine receptor complex: Synthesis, pharmacological and molecular modeling studies

Bioorganic & Medicinal Chemistry
2008.0

Abstract

The synthesis and binding studies of a series of 3-acylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted are reported. High-affinity ligands at benzodiazepine site on GABA(A) receptor complex (GABA(A)/BzR complex) were obtained when the 3-aroyl substituent is represented by a five-member heteroaroyl ring (furoyl-, thenoyl-, and pyrroyl-). Moreover the type of heteroaroyl ring at position 3 influences the feature of the substituent at position 8 to obtain high-affinity ligands: a 'hydrogen-bond acceptor ring' at position 3 is synergic with an electron donor substituent at position 8, while a 'hydrogen-bond donor ring' is synergic with a withdrawing substituent. Compounds 8a, 9b, and 11 were deeply studied in vivo for their pharmacological effects considering six potential benzodiazepine actions: motor coordination, anticonvulsant action, spontaneous motor activity and explorative activity, anxiolytic-like effects, mouse learning and memory modulation, and ethanol-potentiating action. To rationalize and qualitatively interpret the GABA(A)/Bz binding affinities of compounds 8a and 11, a dynamic molecular modeling study has been performed, with the aim of assessing the preferred geometry of protein-ligand complex.

Knowledge Graph

Similar Paper

Novel 3-aroylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted, ligands at GABAA/benzodiazepine receptor complex: Synthesis, pharmacological and molecular modeling studies
Bioorganic & Medicinal Chemistry 2008.0
Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism
Journal of Medicinal Chemistry 2009.0
Novel 3-iodo-8-ethoxypyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide as promising lead for design of α5-inverse agonist useful tools for therapy of mnemonic damage
Bioorganic & Medicinal Chemistry 2007.0
Benzodiazepine Receptor Ligands. 4. Synthesis and Pharmacological Evaluation of 3-Heteroaryl-8-chloropyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxides
Journal of Medicinal Chemistry 1999.0
Computer-Aided Molecular Modeling, Synthesis, and Biological Evaluation of 8-(Benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a Novel Benzodiazepine Receptor Agonist Ligand
Journal of Medicinal Chemistry 1995.0
New Fluoro Derivatives of the Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide System: Evaluation of Fluorine Binding Properties in the Benzodiazepine Site on γ-Aminobutyrric Acid Type A (GABA<sub>A</sub>) Receptor. Design, Synthesis, Biological, and Molecular Modeling Investigation
Journal of Medicinal Chemistry 2010.0
3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:  Tricyclic Heteroaromatic Derivatives as a New Class of Benzodiazepine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
Novel agonists of benzodiazepine receptors: Design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives
Bioorganic &amp; Medicinal Chemistry 2015.0
Tricyclic heteroaromatic systems. [1]benzopyranopyrrol-4-ones and [1]benzopyrano-1,2,3-triazol-4-ones as benzodiazepine receptor ligands. Synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1990.0
New Insight into the Central Benzodiazepine Receptor–Ligand Interactions: Design, Synthesis, Biological Evaluation, and Molecular Modeling of 3-Substituted 6-Phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and Related Compounds
Journal of Medicinal Chemistry 2011.0