Conformational Analysis of D1 Dopamine Receptor Agonists:  Pharmacophore Assessment and Receptor Mapping

Journal of Medicinal Chemistry
1996.0

Abstract

Compute-aided conformational analysis was used to characterize the agonist pharmacophore for D1 dopamine receptor recognition and activation. Dihydrexidine (DHX), a high-affinity full agonist with limited conformational flexibility, served as a structural template that aided in determining a molecular geometry that would be common for other more flexible, biologically active agonists. The intrinsic activity of the drugs at D1 receptors was assessed by their ability to stimulate adenylate cyclase activity in rat striatal homogenates (the accepted measure of D1 receptor activation). In addition, affinity data on 12 agonists including six purported full agonists (dopamine, dihydrexidine, SKF89626, SKF82958, A70108, and A77636), as well as six less efficacious structural analogs, were obtained from D1 dopamine radioreceptor-binding assays. The active analog approach to pharmacophore building was applied as implemented in the SYBYL software package. Conformational analysis and molecular mechanics calculations were used to determine the lowest energy conformation of the active analogs (i.e., full agonists), as well as the conformations of each compound that displayed a common pharmacophoric geometry. It is hypothesized that DHX and other full agonists may share a D1 pharmacophore made up of two hydroxy groups, the nitrogen atom (ca. 7 A from the oxygen of m-hydroxyl) and the accessory ring system characterized by the angle between its plane and that of the catechol ring (except for dopamine and A77636). For all full agonists (DHX, SKF89626, SKF82958, A70108, A77636, and dopamine), the energy difference between the lowest energy conformer and those that displayed a common pharmacophore geometry was relatively small (< 5 kcal/mol). The pharmacophoric conformations of the full agonists were also used to infer the shape of the receptor binding site. Based on the union of the van der Waals density maps of the active analogs, the excluded receptor volume was calculated. Various inactive analogs (partial agonists with D1 K0.5 > 300 nM) subsequently were used to define the receptor essential volume (i.e., sterically intolerable receptor regions). These volumes, together with the pharmacophore results, were integrated into a three-dimensional model estimating the D1 receptor active site topography.

Knowledge Graph

Similar Paper

Conformational Analysis of D<sub>1</sub> Dopamine Receptor Agonists:  Pharmacophore Assessment and Receptor Mapping
Journal of Medicinal Chemistry 1996.0
Further Definition of the D<sub>1</sub> Dopamine Receptor Pharmacophore:  Synthesis of trans-6,6a,7,8,9,13b-Hexahydro-5H-benzo[d]naphth[2,1-b]azepines as Rigid Analogues of β-Phenyldopamine
Journal of Medicinal Chemistry 1997.0
8,9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline:  A Potent Full Dopamine D<sub>1</sub> Agonist Containing a Rigid β-Phenyldopamine Pharmacophore
Journal of Medicinal Chemistry 1996.0
Conformational analysis and structure-activity relationships of selective dopamine D-1 receptor agonists and antagonists of the benzazepine series
Journal of Medicinal Chemistry 1990.0
Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist
Journal of Medicinal Chemistry 1990.0
CoMFA-Based Prediction of Agonist Affinities at Recombinant D1 vs D2 Dopamine Receptors
Journal of Medicinal Chemistry 1998.0
Comparative Molecular Field Analysis-Based Prediction of Drug Affinities at Recombinant D1A Dopamine Receptors
Journal of Medicinal Chemistry 1996.0
Assessment of dopamine D1 receptor affinity and efficacy of three tetracyclic conformationally-restricted analogs of SKF38393
Bioorganic &amp; Medicinal Chemistry 2011.0
Evaluation of cis- and trans-9- and 11-Hydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridines as Structurally Rigid, Selective D1 Dopamine Receptor Ligands
Journal of Medicinal Chemistry 1995.0
Probing the Steric Space at the Floor of the D<sub>1</sub> Dopamine Receptor Orthosteric Binding Domain: 7α-, 7β-, 8α-, and 8β-Methyl Substituted Dihydrexidine Analogues
Journal of Medicinal Chemistry 2011.0