8,9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline:  A Potent Full Dopamine D1 Agonist Containing a Rigid β-Phenyldopamine Pharmacophore

Journal of Medicinal Chemistry
1996.0

Abstract

The present work reports the synthesis and preliminary pharmacological characterization of 8,9-dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de] isoquinoline (4, dinapsoline). This molecule was designed to conserve the essential elements contained in our D1 agonist pharmacophore model (i.e., position and orientation of the nitrogen, hydroxyls, and phenyl rings). It involved taking the backbone of dihydrexidine [3; (+/-)-trans-10, 11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a] phenanthridine], the first high-affinity full D1 agonist, and tethering the two phenyl rings of dihydrexidine through a methylene bridge and removing the C(7)-C(8) ethano bridge. Preliminary molecular modeling studies demonstrated that these modifications conserved the essential elements of the hypothesized pharmacopore. Dinapsoline 4 had almost identical affinity (KI = 5.9 nM) to 3 at rat striatal D1 receptors and had a shallow competition curve (nH = 0.66) that suggested agonist properties. Consistent with this, in both rat striatum and C-6-mD1 cells, dinapsoline 4 was a full agonist with an EC50 of ca. 30 nM in stimulating synthesis of cAMP via D1 receptors. The design and synthesis of dinapsoline 4 provide a powerful test of the model of the D1 pharmacophore we have developed and provide another chemical series that can be useful probes for the study of D1 receptors. An interesting property of 3 is that it also has relatively high D2 affinity (K0.5 = 50 nM) despite having an accessory phenyl ring usually though to convey D1 selectivity. Dinapsoline 4 was found to have even higher affinity for the D2 receptor (K0.5 = 31 nM) than 3. Because of the high affinity of 4 for D2 receptors, it and its analogs can be powerful tools for exploring the mechanisms of "functional selectivity" (i.e., that 3 is an agonist at some D2 receptors, but an antagonist at others). Together, these data suggest that 4 and its derivatives may be powerful tools in the study of dopamine receptor function and also have potential clinical utility in Parkinson's disease and other conditions where perturbation of dopamine receptors is useful.

Knowledge Graph

Similar Paper

8,9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline:  A Potent Full Dopamine D<sub>1</sub> Agonist Containing a Rigid β-Phenyldopamine Pharmacophore
Journal of Medicinal Chemistry 1996.0
Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist
Journal of Medicinal Chemistry 1990.0
trans-2,3-Dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline:  Synthesis, Resolution, and Preliminary Pharmacological Characterization of a New Dopamine D<sub>1</sub>Receptor Full Agonist
Journal of Medicinal Chemistry 2006.0
Further Definition of the D<sub>1</sub> Dopamine Receptor Pharmacophore:  Synthesis of trans-6,6a,7,8,9,13b-Hexahydro-5H-benzo[d]naphth[2,1-b]azepines as Rigid Analogues of β-Phenyldopamine
Journal of Medicinal Chemistry 1997.0
Evaluation of cis- and trans-9- and 11-Hydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridines as Structurally Rigid, Selective D1 Dopamine Receptor Ligands
Journal of Medicinal Chemistry 1995.0
Conformational Analysis of D<sub>1</sub> Dopamine Receptor Agonists:  Pharmacophore Assessment and Receptor Mapping
Journal of Medicinal Chemistry 1996.0
Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands
Journal of Medicinal Chemistry 1988.0
Binding and Preliminary Evaluation of 5-Hydroxy- and 10-Hydroxy-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinolines as Dopamine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
Identification of a 2-phenyl-substituted octahydrobenzo[f]quinoline as a dopamine D3 receptor-selective full agonist ligand
Bioorganic &amp; Medicinal Chemistry 2012.0
Analogues of doxanthrine reveal differences between the dopamine D1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines
European Journal of Medicinal Chemistry 2012.0