Novel (R)-2-Amino-5-fluorotetralins:  Dopaminergic Antagonists and Inverse Agonists

Journal of Medicinal Chemistry
1996.0

Abstract

A series of secondary and tertiary N-alkyl derivatives of (R)-2-amino-5-fluorotetralin have been prepared. The affinities of the compounds for [3H]raclopride-labeled cloned human dopamine (DA) D2 and D3 receptors as well as [3H]-8-OH-DPAT-labeled rat hippocampal 5-HT1A receptors were determined. In order to selectively determine affinities for the high-affinity agonist binding site at DA D2 receptors, the agonist [3H]quinpirole was used. The intrinsic activities of the compounds at DA D2 and D3 receptors were evaluated in a [35S]GTP gamma S binding assay. The novel compounds were characterized as dopaminergic antagonists or inverse agonists. The antagonist (R)-2-(butylpropylamino)-5-fluorotetralin (16) bound with high affinity (Ki = 4.4 nM) to the DA D3 receptor and was the most D3-selective compound (10-fold). (R)-2-[[4-(8-Aza-7, 9-dioxospiro[4.5]decan-8-yl)butyl]propylamino]-5-fluorote tralin (18) bound with very high affinity to both DA D3 and 5-HT1A receptors (Ki = 0.2 nM) and was also characterized as a dopaminergic antagonist. (R)-2-(Benzylpropylamino)-5-fluorotetralin (10) behaved as an inverse agonist at both DA D2 and D3 receptors. It decreased the basal [35S]GTP gamma S binding and potently inhibited the DA-stimulated [35S]GTP gamma S binding. It is apparent that the intrinsic activity of a 2-aminotetralin derivative may be modified by varying the N-alkyl substituents.

Knowledge Graph

Similar Paper

Novel (R)-2-Amino-5-fluorotetralins:  Dopaminergic Antagonists and Inverse Agonists
Journal of Medicinal Chemistry 1996.0
Derivatives of (R)-2-amino-5-methoxytetralin: Antagonists and inverse agonists at the dopamine D2a receptor
Bioorganic & Medicinal Chemistry Letters 1999.0
Synthesis and dopaminergic activity of some halogenated mono- and dihydroxylated 2-aminotetralins
Journal of Medicinal Chemistry 1986.0
Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action
Journal of Medicinal Chemistry 2008.0
5-HT2 antagonist activity of 3-aminomethyltetralones
Bioorganic & Medicinal Chemistry Letters 1991.0
Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands
Journal of Medicinal Chemistry 1988.0
Tetrahydroisoquinolines as dopaminergic ligands: 1-Butyl-7-chloro-6-hydroxy-tetrahydroisoquinoline, a new compound with antidepressant-like activity in mice
Bioorganic & Medicinal Chemistry 2009.0
Adrenoceptor and tetrabenazine antagonism activities of some pyridinyltetrahydropyridines
Journal of Medicinal Chemistry 1984.0
Structure–Activity Relationship Study ofN<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization
Journal of Medicinal Chemistry 2012.0
N-Fluoroalkylated and N-alkylated analogs of the dopaminergic D-2 receptor antagonist raclopride
Journal of Medicinal Chemistry 1990.0