6-Phenyl-1,4-dihydropyridine Derivatives as Potent and Selective A3 Adenosine Receptor Antagonists

Journal of Medicinal Chemistry
1996.0

Abstract

An approach to designing dihydropyridines that bind to adenosine receptors without binding to L-type calcium channels has been described. 1,4-Dihydropyridine derivatives substituted with beta-styryl or phenylethynyl groups at the 4-position and aryl groups at the 6-position were synthesized and found to be selective for human A3 receptors. Combinations of methyl, ethyl, and benzyl esters were included at the 3- and 5-positions. Affinity was determined in radioligand binding assays at rat brain A1 and A2A receptors using [3H]-(R)-PIA [[3H]-(R)-N6-(phenylisopropyl)adenosine] and [3H]CGS 21680 [[3H]-2-[[4-(2-carboxyethyl)phenyl]ethylamino]-5'- (N-ethylcarbamoyl)adenosine], respectively. Affinity was determined at cloned human and rat A3 receptors using [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5'-(N-ethylcarbamoyl)-adenosine]. Structure-activity analysis indicated that substitution of the phenyl ring of the beta-styryl group but not of the 6-phenyl substituent was tolerated in A3 receptor selective agents. Replacement of the 6-phenyl ring with a 3-thienyl or 3-furyl group reduced the affinity at A3 receptors by 4- and 9-fold, respectively. A 5-benzyl ester 4-trans-beta-styryl derivative, 26, with a Ki value of 58.3 nM at A3 receptors, was > 1700-fold selective vs either A1 receptors or A2A receptors. Shifting the benzyl ester to the 3-position lowered the affinity at A3 receptors 3-fold. A 5-benzyl, 3-ethyl ester 4-phenylethynyl derivative, 28, displayed a Ki value of 31.4 nM at A3 receptors and 1300-fold selectivity vs A1 receptors. The isomeric 3-benzyl, 5-ethyl diester was > 600-fold selective for A3 receptors. Oxidation of 28 to the corresponding pyridine derivative reduced affinity at A3 receptors by 88-fold and slightly increased affinity at A1 receptors.

Knowledge Graph

Similar Paper

6-Phenyl-1,4-dihydropyridine Derivatives as Potent and Selective A<sub>3</sub> Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 1996.0
Interaction of 1,4-Dihydropyridine and Pyridine Derivatives with Adenosine Receptors:  Selectivity for A<sub>3</sub> Receptors
Journal of Medicinal Chemistry 1996.0
N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: Synthesis and structure–activity relationships at adenosine A1 and A2A receptors
Bioorganic &amp; Medicinal Chemistry 2007.0
New 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2007.0
Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a New Scaffold To Develop Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2009.0
2-Substitution of N6-Benzyladenosine-5'-uronamides Enhances Selectivity for A3 Adenosine Receptors
Journal of Medicinal Chemistry 1994.0
4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as New Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2006.0
N<sup>6</sup>,5‘-Disubstituted Adenosine Derivatives as Partial Agonists for the Human Adenosine A<sub>3</sub> Receptor
Journal of Medicinal Chemistry 1999.0
Design and Synthesis of Novel α<sub>1a</sub> Adrenoceptor-Selective Dihydropyridine Antagonists for the Treatment of Benign Prostatic Hyperplasia
Journal of Medicinal Chemistry 1998.0
New 1,4-dihydropyridine derivatives combining calcium antagonism and .alpha.-adrenolytic properties
Journal of Medicinal Chemistry 1989.0