New 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Potent and Selective Human A3Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies

Journal of Medicinal Chemistry
2007.0

Abstract

This paper reports the study of some 2-arylpyrazolo[3,4-c]quinolin-4-ones, 4-amines, and 4-amino-substituted derivatives designed as human A3 adenosine receptor (AR) antagonists. Most of the herein reported compounds showed a nanomolar affinity toward the hA3 receptor subtype and different degrees of selectivity that resulted to be strictly dependent on the presence and nature of the substituent on the 4-amino group. Bulky and lipophilic acyl groups, as well as the benzylcarbamoyl residue, afforded highly potent and selective hA3 receptor antagonists. The selected 4-diphenylacetylamino-2-phenylpyrazoloquinoline (25) and 4-dibenzoylamino-2-(4-methoxyphenyl)pyrazoloquinoline (36), tested in an in vitro rat model of cerebral ischemia, prevented the irreversible failure of synaptic activity induced by oxygen and glucose deprivation in the hippocampus. The observed structure-affinity relationships of this class of antagonists were also exhaustively rationalized using the recently published ligand-based homology modeling (LBHM) approach.

Knowledge Graph

Similar Paper

New 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2007.0
Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a New Scaffold To Develop Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2009.0
Synthesis and Structure−Activity Relationships of a New Set of 2-Arylpyrazolo[3,4-c]quinoline Derivatives as Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2000.0
4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as New Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2006.0
1,2,4-Triazolo[1,5-a]quinoxaline as a Versatile Tool for the Design of Selective Human A<sub>3</sub>Adenosine Receptor Antagonists:  Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero)aryl- and 2-Carboxy-Substitued Derivatives
Journal of Medicinal Chemistry 2005.0
1,2,4-Triazolo[4,3-a]quinoxalin-1-one Moiety as an Attractive Scaffold To Develop New Potent and Selective Human A<sub>3</sub> Adenosine Receptor Antagonists:  Synthesis, Pharmacological, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2004.0
1H-Imidazo[4,5-c]quinolin-4-amines: novel non-xanthine adenosine antagonists
Journal of Medicinal Chemistry 1991.0
1,2,4-Triazolo[4,3-a]quinoxalin-1-one:  A Versatile Tool for the Synthesis of Potent and Selective Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2000.0
C2-substituted quinazolinone derivatives exhibit A1 and/or A2A adenosine receptor affinities in the low micromolar range
Bioorganic &amp; Medicinal Chemistry Letters 2020.0