Synthesis, Biological Evaluation, and Quantitative Receptor Docking Simulations of 2-[(Acylamino)ethyl]-1,4-benzodiazepines as Novel Tifluadom-like Ligands with High Affinity and Selectivity for κ-Opioid Receptors

Journal of Medicinal Chemistry
1996.0

Abstract

The synthesis and biological evaluation of a series of 2-substituted 5-phenyl-1,4-benzodiazepines, structurally related to tifluadom (5), the only benzodiazepine that acts simultaneously as a kappa-opioid agonist and a cholecystokinin-A (CCK-A) antagonist, are reported. The radioligand binding models used in these studies were [(125)I](BH)-CCK-8 in rat pancreas (CCK-A), [(3)H]-(MENLE(28,31))-cck-8 in guinea pig cerebral cortex (CCK-B), and [(3)H]U-69593 (kappa(1)), [(3)H]DAMGO (mu), and [(3)H]DADLE (delta) in guinea pig brain. All the title compounds were devoid of significant affinity for both CCK-A and CCK-B receptors, while some of them bound with nanomolar affinity and high selectivity for kappa-opioid receptors. In particular, the 2-thienyl derivative 7A(X = H) with a K(i) = 0.50 nM represents a clear improvement with respect to tifluadom, showing a comparable potency but higher selectivity. The application of computational simulations and linear regression analysis techniques to the complexes between guinea pig kappa (kappa(1))-receptor and the title compounds allowed the identification of the structural determinants for recognition and quantitative elucidation of the structure-affinity relationships in this class of receptors.

Knowledge Graph

Similar Paper

Synthesis, Biological Evaluation, and Quantitative Receptor Docking Simulations of 2-[(Acylamino)ethyl]-1,4-benzodiazepines as Novel Tifluadom-like Ligands with High Affinity and Selectivity for κ-Opioid Receptors
Journal of Medicinal Chemistry 1996.0
Synthesis, Biological Evaluation, and Receptor Docking Simulations of 2-[(Acylamino)ethyl]-1,4-benzodiazepines as κ-Opioid Receptor Agonists Endowed with Antinociceptive and Antiamnesic Activity
Journal of Medicinal Chemistry 2003.0
Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists
Journal of Medicinal Chemistry 1988.0
New Insight into the Central Benzodiazepine Receptor–Ligand Interactions: Design, Synthesis, Biological Evaluation, and Molecular Modeling of 3-Substituted 6-Phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and Related Compounds
Journal of Medicinal Chemistry 2011.0
Synthesis and Benzodiazepine Receptor Affinity of Pyrazolo[1,5-a]pyrimidine Derivatives. 3. New 6-(3-Thienyl) Series as α1 Selective Ligands
Journal of Medicinal Chemistry 2003.0
Computer-Aided Molecular Modeling, Synthesis, and Biological Evaluation of 8-(Benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a Novel Benzodiazepine Receptor Agonist Ligand
Journal of Medicinal Chemistry 1995.0
Thienylpyrazoloquinolines: potent agonists and inverse agonists to benzodiazepine receptors
Journal of Medicinal Chemistry 1988.0
Design, synthesis and biological evaluation of 7-substituted 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f] [1,4]diazepines as safe anxiolytic agents
European Journal of Medicinal Chemistry 2020.0
Highly selective .kappa.-opioid analgesics. 2. Synthesis and structure activity relationships of novel N-(2-aminocyclohexyl)arylacetamide derivatives
Journal of Medicinal Chemistry 1989.0
Piperazinyl benzamidines: Synthesis and affinity for the delta opioid receptor
Bioorganic & Medicinal Chemistry Letters 2001.0