Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii

Journal of Medicinal Chemistry
1996.0

Abstract

The synthesis and biological activity of 42 6-substituted-2,4-diaminopyrido[3,2-d]pyrimidines (2,4-diamino-8-deazafolate analogues) are reported. The compounds were synthesized in improved yields compared to previous classical analogues using modifications of procedures reported previously by us. Specifically, the S-phenyl-; mono-, di-, and trimethoxyphenyl-; and mono-, di-, and trichlorophenyl-substituted analogues with H or CH3 at the N10 position and methyl and trifluoromethyl phenyl ketone analogues with H, CH3, and CH2C identical to CH at the N10 position were synthesized. The S10 and N10 alpha- and beta-naphthyl analogues along with the N10 CH3 analogues were also synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii (pc) and Toxoplasma gondii (tg); selectivity ratios were determined against rat liver (rl) DHFR as the mammalian reference enzyme. Against pcDHFR the IC50 values ranged from 0.038 x 10-6 M for 2,4-diamino-6-[(N-methyl-2'-naphthylamino)methyl]pyrido[3,2-d]pyrimidine (28) to 5.5 x 10(-6) M for 2,4-diamino-6[(2',4'-dimethoxyanilino)methyl]pyrido[3,2-d]pyrim idi ne (15). N10 methylation in all instances increased potency. None of the analogues were selective for pcDHFR. Against tgDHFR the most potent analogue was 2,4-diamino-6-[(N-methylanilino)methyl]pyrido[3,2-d]pyrimidine (5) (IC50 0.0084 x 10(-6) M) and the least potent was 2,4-diamino-6[(2'-naphthylamino)methyl]-pyrido[3,2-d]pyrimidine (37) (IC50 0.16 x 10-6 M). N10 methylation afforded an increase in potency up to 10-fold. In contrast to pcDHFR, several of the 8-deaza analogues were significantly selective for tgDHFR, most notably 2,4-diamino-6-[(2'-chloro-N-methylanilino)-methyl]pyrido[3,2-d] pyrimidine (13), 2,4-diamino-6-[(3',4',5'-trimethoxyanilino)methyl]pyrido[3,2-d]pyr pyrimidine (29), and 2,4-diamino-6-[(2',4',6'-trichloroanilino)methyl]pyrido[3,2-d] pyrimidine (32) which combined high potency at 10-8 M along with selectivities of 8.0, 5.0, and 12.4, respectively. The potency of these three analogues are comparable to the clinically used agent trimetrexate while their selectivities for tgDHFR are 17-43-fold better than trimetrexate.

Knowledge Graph

Similar Paper

Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii
Journal of Medicinal Chemistry 1996.0
2,4-Diamino-5-deaza-6-Substituted Pyrido[2,3-d]pyrimidine Antifolates as Potent and Selective Nonclassical Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1996.0
2,4-Diaminopyrido[3,2-d]pyrimidine Inhibitors of Dihydrofolate Reductase from Pneumocystis carinii and Toxoplasma gondii
Journal of Medicinal Chemistry 1995.0
6-Substituted 2,4-Diamino-5-methylpyrido[2,3-d]pyrimidines as Inhibitors of Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii and as Antitumor Agents
Journal of Medicinal Chemistry 1995.0
Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents
Journal of Medicinal Chemistry 1993.0
Synthesis and Dihydrofolate Reductase Inhibitory Activities of 2,4-Diamino-5-deaza and 2,4-Diamino-5,10-dideaza Lipophilic Antifolates
Journal of Medicinal Chemistry 1997.0
Synthesis and Biological Evaluation of 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase and as Antiopportunistic Infection and Antitumor Agents
Journal of Medicinal Chemistry 2003.0
Nonclassical 2,4-Diamino-5-aryl-6-ethylpyrimidine Antifolates:  Activity as Inhibitors of Dihydrofolate Reductase from Pneumocystis carinii and Toxoplasma gondii and as Antitumor Agents
Journal of Medicinal Chemistry 1997.0
Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:  Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]- pyrido[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1999.0
Novel 2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical Antifolate Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1995.0