Novel 2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical Antifolate Inhibitors of Dihydrofolate Reductases

Journal of Medicinal Chemistry
1995.0

Abstract

Eight novel, nonclassical, antifolate 2,4-diamino-5-(anilinomethyl)pyrrolo[2,3-d]pyrimidines, 1-8, with 3',4',5'-trimethoxyphenyl, 3',4'-dimethoxyphenyl, 2',5'-dimethoxyphenyl, 4'-methoxyphenyl, 2',5'-diethoxyphenyl, 3',4'-dichlorophenyl, 1'naphthyl, and phenyl substituents were synthesized as potential inhibitors of dihydrofolate reductases (DHFRs). The classical analogue N-[4-[N-[(2,4-diaminopyrrolo[2,3-d]pyrimidin- 5-yl)methyl]amino]benzoyl]-L-glutamic acid (9) was also synthesized as an inhibitor of DHFR and an antitumor agent. The classical and nonclassical analogues were obtained via reductive condensations of the key intermediate 2,4-diamino-5-cyanopyrrolo[2,3-d]pyrimidine (12) with the appropriate substituted aniline or (p-aminobenzoyl)-L-glutamate followed by reduction of the intermediate Schiff bases with NaCNBH3. Compounds 1-9 were evaluated in vitro as inhibitors of rat liver (rl), Pneumocystis carinii (pc), and Toxoplasma gondii (tg) DHFRs. The nonclassical analogues were significantly selective against tgDHFR (vs rat liver DHFR), ranging from 7- to 92-fold. The inhibitory activity was lower in pcDHFR and rlDHFR (IC50s > 10(-5) M) than in tgDHFR (IC50s = 10(-6) M). The classical analogue had inhibitory activity similar to that of methotrexate (MTX) against the growth of human leukemia CCRF-CEM, A253, and FaDu squamous cell carcinoma (SCC) of the head and neck cell lines. Further evaluation of 9 against CCRF-CEM and its sublines having defined mechanisms of MTX resistance demonstrated that the analogue utilizes the reduced folate/MTX-transport system and primarily inhibits DHFR and poly-gamma-glutamylation plays a role in its mechanism of action. Compound 9 was found to be 3-fold more efficient than aminopterin as a substrate for human folylpolyglutamate synthetase.

Knowledge Graph

Similar Paper

Novel 2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical Antifolate Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1995.0
2,4-Diamino-5-deaza-6-Substituted Pyrido[2,3-d]pyrimidine Antifolates as Potent and Selective Nonclassical Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1996.0
Design and Synthesis of Classical and Nonclassical 6-Arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as Antifolates
Journal of Medicinal Chemistry 2007.0
Design, Synthesis, and Biological Evaluation of Classical and Nonclassical 2-Amino-4-oxo-5-substituted-6-methylpyrrolo[3,2-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry 2008.0
Classical and Nonclassical Furo[2,3-d]pyrimidines as Novel Antifolates: Synthesis and Biological Activities
Journal of Medicinal Chemistry 1994.0
Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents
Journal of Medicinal Chemistry 1993.0
Synthesis, Antifolate, and Antitumor Activities of Classical and Nonclassical 2-Amino-4-oxo-5-substituted-pyrrolo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 2001.0
The Effect of 5-Alkyl Modification on the Biological Activity of Pyrrolo[2,3-d]pyrimidine Containing Classical and Nonclassical Antifolates as Inhibitors of Dihydrofolate Reductase and as Antitumor and/or Antiopportunistic Infection Agents
Journal of Medicinal Chemistry 2008.0
Effect of N<sup>9</sup>-Methylation and Bridge Atom Variation on the Activity of 5-Substituted 2,4-Diaminopyrrolo[2,3-d]pyrimidines against Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii<sup>1a,b</sup>
Journal of Medicinal Chemistry 1997.0
Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii
Journal of Medicinal Chemistry 1996.0