Structure−Activity Relationships for the Antileishmanial and Antitrypanosomal Activities of 1‘-Substituted 9-Anilinoacridines

Journal of Medicinal Chemistry
1997.0

Abstract

Members of the class of 9-anilinoacridine topoisomerase II inhibitors bearing lipophilic electron-donating 1'-anilino substituents are active against both the promastigote and amastigote forms of the parasite Leishmania major. A series of analogues of the known 1'-NHhexyl lead compound were prepared and evaluated against L. major in macrophage culture to further develop structure-activity relationships (SAR). Toxicity toward mammalian cells was measured in a human leukemia cell line, and the ratio of the two IC50 values (IC50(J)/IC50(L)) was used as a measure of the in vitro therapeutic index (IVTI). A 3,6-diNMe2 substitution pattern on the acridine greatly increased toxicity to L. major without altering mammalian toxicity, increasing IVTIs over that of the lead compound. The 2-OMe, 6-Cl acridine substitution pattern used in the antimalarial drug mepacrine also resulted in potent antileishmanial activity and high IVTIs. Earlier suggestions of the utility of 2'-OR groups in lowering mammalian cytotoxicity were not borne out in this wider study. A series of very lipophilic 1'-NRR (symmetric dialkylamino)-substituted analogues showed relatively high antileishmanial potency, but no clear trend was apparent across the series, and none were superior to the 1'-NH(CH2)5Me subclass. Subsets of the most active 1'-N(R)(CH2)5Me- and 1'-N(alkyl)2-substituted compounds against L. major were also evaluated against Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei, but no consistent SAR could be discerned in these physiologically diverse test systems. The present study has confirmed earlier conclusions that lipophilic electron-donating groups at the 1'-position of 9-anilinoacridines provide high activity against L. major, but the SAR patterns observed do not carry over to the other parasites studied.

Knowledge Graph

Similar Paper

Structure−Activity Relationships for the Antileishmanial and Antitrypanosomal Activities of 1‘-Substituted 9-Anilinoacridines
Journal of Medicinal Chemistry 1997.0
Synthesis and in vitro Evaluation of 9-Anilino-3,6-diaminoacridines Active Against a Multidrug-Resistant Strain of the Malaria Parasite Plasmodium falciparum
Journal of Medicinal Chemistry 1994.0
Potential antitumor agents. 36. Quantitative relationships between experimental antitumor activity, toxicity, and structure for the general class of 9-anilinoacridine antitumor agents
Journal of Medicinal Chemistry 1982.0
9-Substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1995.0
Potential antitumor agents. 42. Structure-activity relationships for acridine-substituted dimethyl phosphoramidate derivatives of 9-anilinoacridine
Journal of Medicinal Chemistry 1984.0
Inhibition of Trypanosoma cruzi Trypanothione Reductase by Acridines:  Kinetic Studies and Structure−Activity Relationships
Journal of Medicinal Chemistry 1999.0
Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtained by acylation of proflavine
European Journal of Medicinal Chemistry 2007.0
Antimalarial, Antitrypanosomal, and Antileishmanial Activities and Cytotoxicity of Bis(9-amino-6-chloro-2-methoxyacridines):  Influence of the Linker
Journal of Medicinal Chemistry 2000.0
Potential antitumor agents. 30. Mutagenic activity of some 9-anilinoacridines: relationships between structure, mutagenic potential, and antileukemic activity
Journal of Medicinal Chemistry 1979.0
Structure−Activity Relationships for Acridine-Substituted Analogues of the Mixed Topoisomerase I/II InhibitorN-[2-(Dimethylamino)ethyl]acridine-4-carboxamide
Journal of Medicinal Chemistry 1997.0