Inhibition of Trypanosoma cruzi Trypanothione Reductase by Acridines:  Kinetic Studies and Structure−Activity Relationships

Journal of Medicinal Chemistry
1999.0

Abstract

Series of 9-amino and 9-thioacridines have been synthesized and studied as inhibitors of trypanothione reductase (TR) from Trypanosoma cruzi, the causative agent of Chagas' disease. The compounds are structural analogues of the acridine drug mepacrine (quinacrine), which is a competitive inhibitor of the parasite enzyme, but not of human glutathione reductase, the closest related host enzyme. The 9-aminoacridines yielded apparent K(i) values for competitive inhibition between 5 and 43 microM. The most effective inhibitors were those with the methoxy and chlorine substituents of mepacrine and NH(2) or NHCH(CH(3))(CH(2))(4)N(Et)(2) at C9. Detailed kinetic analyses revealed that in the case of 9-aminoacridines more than one inhibitor molecule can bind to the enzyme. In contrast, the 9-thioacridine derivatives inhibit TR with mixed-type kinetics. The kinetic data are discussed in light of the three-dimensional structure of the TR-mepacrine complex. The conclusion that structurally very similar acridine compounds can give rise to completely different inhibition patterns renders modelling studies and quantitative structure-activity relationships difficult.

Knowledge Graph

Similar Paper

Inhibition of Trypanosoma cruzi Trypanothione Reductase by Acridines:  Kinetic Studies and Structure−Activity Relationships
Journal of Medicinal Chemistry 1999.0
Inhibitors ofTrypanosoma cruziTrypanothione Reductase Revealed by Virtual Screening and Parallel Synthesis
Journal of Medicinal Chemistry 2005.0
Novel polyamine derivatives as potent competitive inhibitors of Trypanosoma cruzi trypanothione reductase
Bioorganic & Medicinal Chemistry Letters 1995.0
The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors
Bioorganic & Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationship Study of Potent Trypanocidal Thio Semicarbazone Inhibitors of the Trypanosomal Cysteine Protease Cruzain
Journal of Medicinal Chemistry 2002.0
Synthesis, Biological Evaluation, and Structure–Activity Relationships of Potent Noncovalent and Nonpeptidic Cruzain Inhibitors as Anti-Trypanosoma cruzi Agents
Journal of Medicinal Chemistry 2014.0
Synthesis and evaluation of 9,9-dimethylxanthene tricyclics against trypanothione reductase, Trypanosoma brucei , Trypanosoma cruzi and Leishmania donovani
Bioorganic & Medicinal Chemistry Letters 2000.0
Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase
European Journal of Medicinal Chemistry 2017.0
Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model
European Journal of Medicinal Chemistry 2013.0
Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs
Journal of Medicinal Chemistry 1998.0